Arithmetic properties of multiplicative integer-valued perturbed random walks
Volume 11, Issue 2 (2024), pp. 133–148
Pub. online: 4 January 2024
Type: Research Article
Open Access
Received
4 October 2023
4 October 2023
Revised
12 December 2023
12 December 2023
Accepted
12 December 2023
12 December 2023
Published
4 January 2024
4 January 2024
Abstract
Let $({\xi _{1}},{\eta _{1}})$, $({\xi _{2}},{\eta _{2}}),\dots $ be independent identically distributed ${\mathbb{N}^{2}}$-valued random vectors with arbitrarily dependent components. The sequence ${({\Theta _{k}})_{k\in \mathbb{N}}}$ defined by ${\Theta _{k}}={\Pi _{k-1}}\cdot {\eta _{k}}$, where ${\Pi _{0}}=1$ and ${\Pi _{k}}={\xi _{1}}\cdot \dots \cdot {\xi _{k}}$ for $k\in \mathbb{N}$, is called a multiplicative perturbed random walk. Arithmetic properties of the random sets $\{{\Pi _{1}},{\Pi _{2}},\dots ,{\Pi _{k}}\}\subset \mathbb{N}$ and $\{{\Theta _{1}},{\Theta _{2}},\dots ,{\Theta _{k}}\}\subset \mathbb{N}$, $k\in \mathbb{N}$, are studied. In particular, distributional limit theorems for their prime counts and for the least common multiple are derived.
References
Alsmeyer, G., Kabluchko, Z., Marynych, A.: Limit theorems for the least common multiple of a random set of integers. Trans. Am. Math. Soc. 372(7), 4585–4603 (2019). doi: https://doi.org/10.1090/tran/7871. MR4009436
Bostan, A., Marynych, A., Raschel, K.: On the least common multiple of several random integers. J. Number Theory 204, 113–133 (2019). doi: https://doi.org/10.1016/j.jnt.2019.03.017. MR3991415
Buraczewski, D., Iksanov, A., Marynych, A.: Central limit theorem for the least common multiple of a uniformly sampled m-tuple of integers. J. Number Theory 233, 301–336 (2022). doi: https://doi.org/10.1016/j.jnt.2021.06.012. MR4356854
Fernández, J., Fernández, P.: Divisibility properties of random samples of integers. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 115(1), 26–35 (2021). doi: https://doi.org/10.1007/s13398-020-00960-x. MR4182103
Hilberdink, T., Tóth, L.: On the average value of the least common multiple of k positive integers. J. Number Theory 169, 327–341 (2016). doi: https://doi.org/10.1016/j.jnt.2016.05.024. MR3531243
Iksanov, A.: Renewal Theory for Perturbed Random Walks and Similar Processes. Probability and its Applications, 250 pp. Birkhäuser/Springer, Cham (2016). doi: https://doi.org/10.1007/978-3-319-49113-4. MR3585464
Iksanov, A., Pilipenko, A., Samoilenko, I.: Functional limit theorems for the maxima of perturbed random walk and divergent perpetuities in the ${M_{1}}$-topology. Extremes 20(3), 567–583 (2017). doi: https://doi.org/10.1007/s10687-017-0288-2. MR3679982
Kabluchko, Z., Marynych, A., Raschel, K.: Multivariate multiplicative functions of uniform random vectors in large integer domains. Results Math. 78(5), 201 (2023). doi: https://doi.org/10.1007/s00025-023-01978-4. MR4624583
Kim, S.: On the distribution of the lcm of k-tuples and related problems. Funct. Approx. Comment. Math. 68(1), 19–39 (2023). doi: https://doi.org/10.7169/facm/2008. MR4564862
Olver, F., Lozier, D., Boisvert, R., Clark, C. (eds.): NIST Handbook of Mathematical Functions, 951 pp. U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge (2010). With 1 CD-ROM (Windows, Macintosh and UNIX). MR2723248
Resnick, S.: Extreme Values, Regular Variation and Point Processes. Springer Series in Operations Research and Financial Engineering, 320 pp. Springer (2008). Reprint of the 1987 original. MR2364939