Despite the fact that the theory of stability of continuous-time difference equations has a long history, is well developed and very popular in research, there is a simple and clearly formulated problem about the stability of stochastic difference equations with continuous time and distributed delay, which has not been solved for more than 13 years. This paper offers to readers some generalization on this unsolved problem in the hope that it will help move closer to its solution.
A nonlinear stochastic differential equation with the order of nonlinearity higher than one, with several discrete and distributed delays and time varying coefficients is considered. It is shown that the sufficient conditions for exponential mean square stability of the linear part of the considered nonlinear equation also are sufficient conditions for stability in probability of the initial nonlinear equation. Some new sufficient condition of stability in probability for the zero solution of the considered nonlinear non-autonomous stochastic differential equation is obtained which can be considered as a multi-condition of stability because it allows to get for one considered equation at once several different complementary of each other sufficient stability conditions. The obtained results are illustrated with numerical simulations and figures.