In this paper, a solution is given to reflected backward doubly stochastic differential equations when the barrier is not necessarily right-continuous, and the noise is driven by two independent Brownian motions and an independent Poisson random measure. The existence and uniqueness of the solution is shown, firstly when the coefficients are stochastic Lipschitz, and secondly by weakening the conditions on the stochastic growth coefficient.
This paper proves the existence and uniqueness of a solution to doubly reflected backward stochastic differential equations where the coefficient is stochastic Lipschitz, by means of the penalization method.
In this paper, we study multidimensional generalized BSDEs that have a monotone generator in a general filtration supporting a Brownian motion and an independent Poisson random measure. First, we prove the existence and uniqueness of ${\mathbb{L}}^{p}(p\ge 2)$-solutions in the case of a fixed terminal time under suitable p-integrability conditions on the data. Then, we extend these results to the case of a random terminal time. Furthermore, we provide a comparison result in dimension 1.