Quasi-mixing limits of the killed symmetric Lévy process are studied. It is proved that (intrinsic) ultracontractivity of the underlying process implies the existence of its (uniformly) exponentially quasi-mixing limits. As a by-product, this implication ensures that the process has (uniformly) exponential quasi-ergodicity and (uniformly) exponentially fractional quasi-ergodicity on ${L^{p}}$ ($p\ge 1$). It is noteworthy that precise rates of convergence and precise limiting equalities are provided, which are determined by spectral gaps and eigenfunction ratios of the underlying process. Finally, three examples are provided to demonstrate the theoretical results.
A new multi-factor short rate model is presented which is bounded from below by a real-valued function of time. The mean-reverting short rate process is modeled by a sum of pure-jump Ornstein–Uhlenbeck processes such that the related bond prices possess affine representations. Also the dynamics of the associated instantaneous forward rate is provided and a condition is derived under which the model can be market-consistently calibrated. The analytical tractability of this model is illustrated by the derivation of an explicit plain vanilla option price formula. With view on practical applications, suitable probability distributions are proposed for the driving jump processes. The paper is concluded by presenting a post-crisis extension of the proposed short and forward rate model.
Let $\{L(t),t\ge 0\}$ be a Lévy process with representative random variable $L(1)$ defined by the infinitely divisible logarithmic series distribution. We study here the transition probability and Lévy measure of this process. We also define two subordinated processes. The first one, $Y(t)$, is a Negative-Binomial process $X(t)$ directed by Gamma process. The second process, $Z(t)$, is a Logarithmic Lévy process $L(t)$ directed by Poisson process. For them, we prove that the Bernstein functions of the processes $L(t)$ and $Y(t)$ contain the iterated logarithmic function. In addition, the Lévy measure of the subordinated process $Z(t)$ is a shifted Lévy measure of the Negative-Binomial process $X(t)$. We compare the properties of these processes, knowing that the total masses of corresponding Lévy measures are equal.
The problem of European-style option pricing in time-changed Lévy models in the presence of compound Poisson jumps is considered. These jumps relate to sudden large drops in stock prices induced by political or economical hits. As the time-changed Lévy models, the variance-gamma and the normal-inverse Gaussian models are discussed. Exact formulas are given for the price of digital asset-or-nothing call option on extra asset in foreign currency. The prices of simpler options can be derived as corollaries of our results and examples are presented. Various types of dependencies between stock prices are mentioned.
We investigate the pricing of cliquet options in a jump-diffusion model. The considered option is of monthly sum cap style while the underlying stock price model is driven by a drifted Lévy process entailing a Brownian diffusion component as well as compound Poisson jumps. We also derive representations for the density and distribution function of the emerging Lévy process. In this setting, we infer semi-analytic expressions for the cliquet option price by two different approaches. The first one involves the probability distribution function of the driving Lévy process whereas the second draws upon Fourier transform techniques. With view on sensitivity analysis and hedging purposes, we eventually deduce representations for several Greeks while putting emphasis on the Vega.