Random functions $\mu (x)$, generated by values of stochastic measures are considered. The Besov regularity of the continuous paths of $\mu (x)$, $x\in {[0,1]^{d}}$, is proved. Fourier series expansion of $\mu (x)$, $x\in [0,2\pi ]$, is obtained. These results are proved under weaker conditions than similar results in previous papers.