We establish the large deviation principle for solutions of one-dimensional SDEs with discontinuous coefficients. The main statement is formulated in a form similar to the classical Wentzel–Freidlin theorem, but under the considerably weaker assumption that the coefficients have no discontinuities of the second kind.
The article is devoted to the estimation of the convergence rate of integral functionals of a Markov process. Under the assumption that the given Markov process admits a transition probability density differentiable in t and the derivative has an integrable upper bound of a certain type, we derive the accuracy rates for strong and weak approximations of the functionals by Riemannian sums. We also develop a version of the parametrix method, which provides the required upper bound for the derivative of the transition probability density for a solution of an SDE driven by a locally stable process. As an application, we give accuracy bounds for an approximation of the price of an occupation time option.
We obtain weak rates for approximation of an integral functional of a Markov process by integral sums. An assumption on the process is formulated only in terms of its transition probability density, and, therefore, our approach is not strongly dependent on the structure of the process. Applications to the estimates of the rates of approximation of the Feynman–Kac semigroup and of the price of “occupation-time options” are provided.
Using martingale methods, we provide bounds for the entropy of a probability measure on ${\mathbb{R}}^{d}$ with the right-hand side given in a certain integral form. As a corollary, in the one-dimensional case, we obtain a weighted log-Sobolev inequality.