A new formula for the ultimate ruin probability in the Cramér–Lundberg risk process is provided when the claims are assumed to follow a finite mixture of m Erlang distributions. Using the theory of recurrence sequences, the method proposed here shifts the problem of finding the ruin probability to the study of an associated characteristic polynomial and its roots. The found formula is given by a finite sum of terms, one for each root of the polynomial, and allows for yet another approximation of the ruin probability. No constraints are assumed on the multiplicity of the roots and that is illustrated via a couple of numerical examples.
Based on a discrete version of the Pollaczeck–Khinchine formula, a general method to calculate the ultimate ruin probability in the Gerber–Dickson risk model is provided when claims follow a negative binomial mixture distribution. The result is then extended for claims with a mixed Poisson distribution. The formula obtained allows for some approximation procedures. Several examples are provided along with the numerical evidence of the accuracy of the approximations.