Sufficient conditions are presented on the offspring and immigration distributions of a second-order Galton–Watson process ${({X_{n}})_{n\geqslant -1}}$ with immigration, under which the distribution of the initial values $({X_{0}},{X_{-1}})$ can be uniquely chosen such that the process becomes strongly stationary and the common distribution of ${X_{n}}$, $n\geqslant -1$, is regularly varying.
Limit behaviour of temporal and contemporaneous aggregations of independent copies of a stationary multitype Galton–Watson branching process with immigration is studied in the so-called iterated and simultaneous cases, respectively. In both cases, the limit process is a zero mean Brownian motion with the same covariance function under third order moment conditions on the branching and immigration distributions. We specialize our results for generalized integer-valued autoregressive processes and single-type Galton–Watson processes with immigration as well.