The paper presents bounds for the distributions of suprema for a particular class of sub-Gaussian type random fields defined over spaces with anisotropic metrics. The results are applied to random fields related to stochastic heat equations with fractional noise: bounds for the tail distributions of suprema and estimates for the rate of growth are provided for such fields.
This paper investigates sample paths properties of φ-sub-Gaussian processes by means of entropy methods. Basing on a particular entropy integral, we treat the questions on continuity and the rate of growth of sample paths. The obtained results are then used to investigate the sample paths properties for a particular class of φ-sub-Gaussian processes related to the random heat equation. We derive the estimates for the distribution of suprema of such processes and evaluate their rate of growth.