In this paper, the asmptotics is considered for the distribution tail of a randomly stopped sum ${S_{\nu }}={X_{1}}+\cdots +{X_{\nu }}$ of independent identically distributed consistently varying random variables with zero mean, where ν is a counting random variable independent of $\{{X_{1}},{X_{2}},\dots \}$. The conditions are provided for the relation $\mathbb{P}({S_{\nu }}\gt x)\sim \mathbb{E}\nu \hspace{0.1667em}\mathbb{P}({X_{1}}\gt x)$ to hold, as $x\to \infty $, involving the finiteness of $\mathbb{E}|{X_{1}}|$. The result improves that of Olvera-Cravioto [14], where the finiteness of a moment $\mathbb{E}|{X_{1}}{|^{r}}$ for some $r\gt 1$ was assumed.
A bivariate integer-valued autoregressive process of order 1 (BINAR(1)) with copula-joint innovations is studied. Different parameter estimation methods are analyzed and compared via Monte Carlo simulations with emphasis on estimation of the copula dependence parameter. An empirical application on defaulted and non-defaulted loan data is carried out using different combinations of copula functions and marginal distribution functions covering the cases where both marginal distributions are from the same family, as well as the case where they are from different distribution families.