Probabilistic properties of vantage point trees are studied. A vp-tree built from a sequence of independent identically distributed points in ${[-1,\hspace{0.1667em}1]^{d}}$ with the ${\ell _{\infty }}$-distance function is considered. The length of the leftmost path in the tree, as well as partitions over the space it produces are analyzed. The results include several convergence theorems regarding these characteristics, as the number of nodes in the tree tends to infinity.
We study random independent and identically distributed iterations of functions from an iterated function system of homeomorphisms on the circle which is minimal. We show how such systems can be analyzed in terms of iterated function systems with probabilities which are non-expansive on average.