Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 4, Issue 3 (2017)
  4. Random iterations of homeomorphisms on t ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

Random iterations of homeomorphisms on the circle
Volume 4, Issue 3 (2017), pp. 253–271
Katrin Gelfert 1   Örjan Stenflo 1  

Authors

 
Placeholder
https://doi.org/10.15559/17-VMSTA86
Pub. online: 5 October 2017      Type: Research Article      Open accessOpen Access

1 KG has been supported, in part, by CNPq research grant 302880/2015-1 (Brazil). KG and ÖS thank ICERM (USA) for their hospitality and financial support.

Received
22 March 2017
Revised
25 September 2017
Accepted
25 September 2017
Published
5 October 2017

Notes

Dedicated to Professor Dmitrii S. Silvestrov on the occasion of his 70th Birthday

Abstract

We study random independent and identically distributed iterations of functions from an iterated function system of homeomorphisms on the circle which is minimal. We show how such systems can be analyzed in terms of iterated function systems with probabilities which are non-expansive on average.

References

[1] 
Antonov, V.A.: Modeling of processes of cyclic evolution type. Synchronization by a random signal. Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 2, 67–76 (1984). (in Russian). MR0756386
[2] 
Arnold, L.: Random Dynamical Systems. Springer Monographs in Mathematics. Springer, Berlin (1998). MR1723992. doi:10.1007/978-3-662-12878-7
[3] 
Ávila, A., Viana, M.: Extremal Lyapunov exponents: an invariance principle and applications. Inventiones Mathematicae 181, 115–178 (2010). MR2651382. doi:10.1007/s00222-010-0243-1
[4] 
Barnsley, M.F., Demko, S.: Iterated function systems and the global construction of fractals. Proc. Roy. Soc. London. Ser. A 399, 243–275 (1985). MR0799111. doi:10.1098/rspa.1985.0057
[5] 
Barrientos, P.G., Ghane, F.H., Malicet, D., Sarizadeh, A.: On the chaos game of iterated function systems. Topol. Methods Nonlinear Anal. 49, 105–132 (2017). MR3635639
[6] 
Breiman, L.: The strong law of large numbers for a class of Markov chains. Ann. Math. Statist. 31, 801–803 (1960). MR0117786. doi:10.1214/aoms/1177705810
[7] 
Chung, K.L.: A Course in Probability Theory, 3rd edn. Academic Press, Inc., San Diego, CA (2001). MR1796326
[8] 
Crauel, H.: Extremal exponents of random dynamical systems do not vanish. J. Dyn. Diff. Equations 2, 245–291 (1990). MR1066618. doi:10.1007/BF01048947
[9] 
Díaz, L.J., Gelfert, K., Rams, M.: Nonhyperbolic step skew-products: Ergodic approximation. To appear in: Annales de l’Institut Henri Poincare / Analyse non lineaire
[10] 
Furstenberg, H.: Noncommuting random products. Trans. Amer. Math. Soc. 108, 377–428 (1963). MR0163345. doi:10.2307/1993589
[11] 
Furstenberg, H.: Boundary theory and stochastic processes on homogeneous spaces. Proc. Sympos. Pure Math. 26, 193–229 (1973). MR0352328. doi:10.1090/pspum/026/0352328
[12] 
Ghys, E.: Groups acting on the circle. Enseign. Math. (2) 47, 329–407 (2001). MR1876932
[13] 
Golenishcheva-Kutuzova, T., Gorodetski, A., Kleptsyn, V., Volk, D.: Translation numbers define generators of ${F_{k}^{+}}\to \mathrm{Homeo}_{+}({\mathbb{S}}^{1})$. Mosc. Math. J. 14, 291–308 (2014). MR3236495
[14] 
Kleptsyn, V.A., Nal’skiĭ, M.B.: Convergence of orbits in random dynamical systems on a circle. Funct. Anal. Appl. 38, 267–282 (2004). MR2117507. doi:10.1007/s10688-005-0005-9
[15] 
Ledrappier, F.: Positivity of the exponent for stationary sequences of matrices. In: Lyapunov Exponents, pp. 56–73. Springer, (1986). MR0850070. doi:10.1007/BFb0076833
[16] 
Le Jan, Y.: Équilibre statistique pour les produits de difféomorphismes aléatoires indépendants. Ann. Inst. H. Poincaré Probab. Statist. 23, 111–120 (1987). MR0877387
[17] 
Malicet, D.: Random walks on Homeo$({S}^{1})$. Comm. Math. Phys. Preprint, To appear in arXiv:1412.8618
[18] 
Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. With a prologue by Glynn, P.W. (ed.): 2nd edn. Cambridge University Press, Cambridge (2009). MR2509253. doi:10.1017/CBO9780511626630
[19] 
Navas, A.: Groups of Circle Diffeomorphisms, Translation of the 2007 Spanish edition. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (2011). MR2809110. doi:10.7208/chicago/9780226569505.001.0001
[20] 
Stenflo, Ö.: A survey of average contractive iterated function systems. J. Difference Equ. Appl. 18, 1355–1380 (2012). MR2956050. doi:10.1080/10236198.2011.610793
[21] 
Szarek, T., Zdunik, A.: Stability of iterated function systems on the circle. Bull. Lond. Math. Soc. 48, 365–378 (2016). MR3483074. doi:10.1112/blms/bdw013
[22] 
Szarek, T., Zdunik, A.: The Central Limit Theorem for function systems on the circle. Preprint arXiv:1703.10465
[23] 
Viana, M.: Lectures on Lyapunov exponents. Cambridge Studies in Advanced Mathematics, vol. 145. Cambridge University Press, Cambridge (2014). MR3289050. doi:10.1017/CBO9781139976602

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2017 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Markov chains stationary distributions minimal iterated function systems circle homeomorphisms synchronization random dynamical systems

MSC2010
37E10 37Hxx 60B10 60J05 60G57

Metrics
since March 2018
1172

Article info
views

541

Full article
views

389

PDF
downloads

154

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy