Some equations are provided for the Variance Gamma process using the definition other than that based on a time-changed Brownian motion. A new nonlocal equation is obtained involving generalized Weyl derivatives, which is true even in the drifted case. The connection to special functions is in focus, and a space equation for the process is studied. In conclusion, the convergence in distribution of a compound Poisson process to the Variance Gamma process is observed.
Fractional equations governing the distribution of reflecting drifted Brownian motions are presented. The equations are expressed in terms of tempered Riemann–Liouville type derivatives. For these operators a Marchaud-type form is obtained and a Riesz tempered fractional derivative is examined, together with its Fourier transform.