Variance Gamma (nonlocal) equations
Volume 10, Issue 4 (2023), pp. 413–424
Pub. online: 25 September 2023
Type: Research Article
Open Access
Received
20 February 2023
20 February 2023
Revised
9 June 2023
9 June 2023
Accepted
12 August 2023
12 August 2023
Published
25 September 2023
25 September 2023
Abstract
Some equations are provided for the Variance Gamma process using the definition other than that based on a time-changed Brownian motion. A new nonlocal equation is obtained involving generalized Weyl derivatives, which is true even in the drifted case. The connection to special functions is in focus, and a space equation for the process is studied. In conclusion, the convergence in distribution of a compound Poisson process to the Variance Gamma process is observed.
References
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55. US Government Printing Office (1964). MR0167642
Ascione, G., Mehrdoust, F., Orlando, G., Samimi, O.: Foreign exchange options on Heston-CIR model under Lévy process framework. Appl. Math. Comput. 446 (2023). MR4550246
Beghin, L.: Geometric stable processes and related fractional differential equations. Electron. Commun. Probab. 19, 1–14 (2014). MR3174831. https://doi.org/10.1214/ECP.v19-2771
Bertoin, J.: Lévy Processes, vol. 121. Cambridge University Press, Cambridge (1996). MR1406564
Bochner, S.: Diffusion equation and stochastic processes. Proc. Natl. Acad. Sci. 35(7), 368–370 (1949). MR30151. https://doi.org/10.1073/pnas.35.7.368
Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R., Vondracek, Z., Song, R., Vondraček, Z.: Potential theory of subordinate brownian motion. In: Potential Analysis of Stable Processes and its Extensions, 87–176 (2009) MR2569321. https://doi.org/10.1007/978-3-642-02141-1
Colantoni, F., D’Ovidio, M.: On the inverse gamma subordinator. Stoch. Anal. Appl. 41(5), 999–1024 (2023). MR4627143. https://doi.org/10.1080/07362994.2022.2108450
D’Ovidio, M.: Continuous random walks and fractional powers of operators. J. Math. Anal. Appl. 411(1), 362–371 (2014). MR3118491. https://doi.org/10.1016/j.jmaa.2013.09.048.
Ferrari, F.: Weyl and Marchaud derivatives: A forgotten history. Mathematics 6(1), 6 (2018). https://doi.org/10.3390/math6010006
Gajda, J., Wyłomańska, A., Kumar, A.: Generalized fractional Laplace motion. Stat. Probab. Lett. 124, 101–109 (2017). MR3608219
Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn., p. 1171. Elsevier/Academic Press, Amsterdam (2007). MR2360010
Jacob, N.: Pseudo Differential Operators and Markov Processes. Vol. I, p. 493. Imperial College Press, London (2001). Fourier analysis and semigroups. MR1873235
Ken-Iti, S.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999). MR3185174
Kim, P., Song, R., Vondraček, Z.: Potential theory of subordinate Brownian motions revisited. In: Stochastic Analysis and Applications to Finance. Interdiscip. Math. Sci., vol. 13, pp. 243–290. World Sci. Publ., Hackensack, NJ (2012). MR2986850
Kotz, S., Kozubowski, T.J., Podgórski, K.: The Laplace Distribution and Generalizations. Birkhäuser Boston, Inc., Boston, MA (2001). MR1935481. https://doi.org/10.1007/978-1-4612-0173-1
Kozubowski, T.J., Meerschaert, M.M., Podgórski, K.: Fractional Laplace motion. Adv. Appl. Probab. 38(2), 451–464 (2006). MR2264952
Kwaśnicki, M.: Spectral analysis of subordinate Brownian motions on the half-line. Stud. Math. 206(3), 211–271 (2011). MR2860308
Madan, D.B., Seneta, E.: The variance gamma (vg) model for share market returns. J. Bus. 63(4), 511–524 (1990). https://doi.org/10.1086/296519
Madan, D.B., Carr, P.P., Chang, E.C.: The variance gamma process and option pricing. Rev. Finance 2(1), 79–105 (1998). https://doi.org/10.1023/A:1009703431535
Phillips, R.S.: On the generation of semigroups of linear operators. Pac. J. Math. 2(3), 343–369 (1952). MR50797
Reed, W.J.: Brownian-Laplace motion and its use in financial modelling. Commun. Stat., Theory Methods 36(1-4), 473–484 (2007). MR2405311
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993). Theory and applications. MR1347689
Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions, 2nd edn. De Gruyter Studies in Mathematics, vol. 37. Walter de Gruyter & Co., Berlin (2012). MR2978140
Toaldo, B.: Convolution-type derivatives, hitting-times of subordinators and time-changed ${C_{0}}$-semigroups. Potential Anal. 42(1), 115–140 (2015). MR3297989