Given a compound mixed renewal process S under a probability measure P, we provide a characterization of all progressively equivalent martingale probability measures Q on the domain of P, that convert S into a compound mixed Poisson process. This result extends earlier works of Delbaen and Haezendonck, Lyberopoulos and Macheras, and the authors, and enables us to find a wide class of price processes satisfying the condition of no free lunch with vanishing risk. Implications to the ruin problem and to the computation of premium calculation principles in an arbitrage-free insurance market are also discussed.
and the generating function of $\varphi (u+1)$ are set up. We assume that $u\in \mathbb{N}\cup \{0\}$, $\kappa \in \mathbb{N}$, the random walk $\{{\textstyle\sum _{i=1}^{n}}{X_{i}},\hspace{0.1667em}n\in \mathbb{N}\}$ involves $N\in \mathbb{N}$ periodically occurring distributions, and the integer-valued and nonnegative random variables ${X_{1}},{X_{2}},\dots $ are independent. This research generalizes two recent works where $\{\kappa =1,N\in \mathbb{N}\}$ and $\{\kappa \in \mathbb{N},N=1\}$ were considered respectively. The provided sequence of sums $\{{\textstyle\sum _{i=1}^{n}}({X_{i}}-\kappa ),\hspace{0.1667em}n\in \mathbb{N}\}$ generates the so-called multi-seasonal discrete-time risk model with arbitrary natural premium and its known distribution enables to compute the ultimate time ruin probability $1-\varphi (u)$ or survival probability $\varphi (u)$. The obtained theoretical statements are verified in several computational examples where the values of the survival probability $\varphi (u)$ and its generating function are provided when $\{\kappa =2,\hspace{0.1667em}N=2\}$, $\{\kappa =3,\hspace{0.1667em}N=2\}$, $\{\kappa =5,\hspace{0.1667em}N=10\}$ and ${X_{i}}$ adopts the Poisson and some other distributions. The conjecture on the nonsingularity of certain matrices is posed.