Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 11, Issue 3 (2024)
  4. Distribution of shifted discrete random ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Distribution of shifted discrete random walk generated by distinct random variables and applications in ruin theory
Volume 11, Issue 3 (2024), pp. 323–357
Simonas Gervė   Andrius Grigutis ORCID icon link to view author Andrius Grigutis details  

Authors

 
Placeholder
https://doi.org/10.15559/24-VMSTA249
Pub. online: 19 March 2024      Type: Research Article      Open accessOpen Access

Received
3 November 2023
Revised
13 February 2024
Accepted
22 February 2024
Published
19 March 2024

Abstract

In this paper, the distribution function
\[ \varphi (u)=\mathbb{P}\Bigg(\underset{n\geqslant 1}{\sup }{\sum \limits_{i=1}^{n}}({X_{i}}-\kappa )\lt u\Bigg),\]
and the generating function of $\varphi (u+1)$ are set up. We assume that $u\in \mathbb{N}\cup \{0\}$, $\kappa \in \mathbb{N}$, the random walk $\{{\textstyle\sum _{i=1}^{n}}{X_{i}},\hspace{0.1667em}n\in \mathbb{N}\}$ involves $N\in \mathbb{N}$ periodically occurring distributions, and the integer-valued and nonnegative random variables ${X_{1}},{X_{2}},\dots $ are independent. This research generalizes two recent works where $\{\kappa =1,N\in \mathbb{N}\}$ and $\{\kappa \in \mathbb{N},N=1\}$ were considered respectively. The provided sequence of sums $\{{\textstyle\sum _{i=1}^{n}}({X_{i}}-\kappa ),\hspace{0.1667em}n\in \mathbb{N}\}$ generates the so-called multi-seasonal discrete-time risk model with arbitrary natural premium and its known distribution enables to compute the ultimate time ruin probability $1-\varphi (u)$ or survival probability $\varphi (u)$. The obtained theoretical statements are verified in several computational examples where the values of the survival probability $\varphi (u)$ and its generating function are provided when $\{\kappa =2,\hspace{0.1667em}N=2\}$, $\{\kappa =3,\hspace{0.1667em}N=2\}$, $\{\kappa =5,\hspace{0.1667em}N=10\}$ and ${X_{i}}$ adopts the Poisson and some other distributions. The conjecture on the nonsingularity of certain matrices is posed.

References

[1] 
Alencenovič, A., Grigutis, A.: Bi-seasonal discrete time risk model with income rate two. Commun. Stat., Theory Methods 52(17), 6161–6178 (2023). MR4611568. https://doi.org/10.1080/03610926.2022.2026962
[2] 
Andersen, E.S.: On the collective theory of risk in case of contagion between the claims. In: Transactions on XVth International Congress of Actuaries, vol. 2, pp. 219–229 (1957)
[3] 
Arguin, L.P., Hartung, L., Kistler, N.: High points of a random model of the Riemann-zeta function and Gaussian multiplicative chaos. Stoch. Process. Appl. 151, 174–190 (2022). MR4441506. https://doi.org/10.1016/j.spa.2022.04.017
[4] 
Asmussen, S., Albrecher, H.: Ruin Probabilities, 2nd edn. Advanced Series on Statistical Science and Applied Probability. World Scientific Publishing Company (2010). MR2766220. https://doi.org/10.1142/9789814282536
[5] 
Blaževičius, K., Bieliauskienė, E., Šiaulys, J.: Finite-time ruin probability in the inhomogenous claim case. Lith. Math. J. 50, 260–270 (2010). MR2719562. https://doi.org/10.1007/s10986-010-9084-2
[6] 
Bohun, V., Marynych, A.: Random walks with sticky barriers. Mod. Stoch. Theory Appl. 9(3), 245–263 (2022). MR4462023. https://doi.org/10.15559/22-vmsta202
[7] 
Buraczewski, D., Dong, C., Iksanov, A., Marynych, A.: Critical branching processes in a sparse random environment. Mod. Stoch. Theory Appl. 10(4), 397–411 (2023). MR4655407. https://doi.org/10.15559/23-vmsta231
[8] 
Cang, Y., Yang, Y., Shi, X.: A note on the uniform asymptotic behavior of the finite-time ruin probability in a nonstandard renewal risk model. Lith. Math. J. 60, 161–172 (2020). MR4110665. https://doi.org/10.1007/s10986-020-09473-x
[9] 
Case, K.E., Shiller, R.J.: The efficiency of the market for single-family homes. Am. Econ. Rev. 79(1), 125–137 (1989)
[10] 
Castañer, A., Claramunt, M.M., Gathy, M., Lefèvre, C., Mármol, M.: Ruin problems for a discrete time risk model with non-homogeneous conditions. Scand. Actuar. J. 2013(2), 83–102 (2013). MR3041119. https://doi.org/10.1080/03461238.2010.546144
[11] 
Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Thick points for planar brownian motion and the Erdős-Taylor conjecture on random walk. Acta Math. 186(2), 239–270 (2001). MR1846031. https://doi.org/10.1007/BF02401841
[12] 
Dickson, D.C.M.: On numerical evaluation of finite time survival probabilities. Br. Actuar. J. 5(3), 575–584 (1999). https://doi.org/10.1017/S135732170000057X
[13] 
Edelman, A., Rao, N.R.: Random matrix theory. Acta Numer. 14, 233–297 (2005). MR2168344. https://doi.org/10.1017/S0962492904000236
[14] 
Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2, 2nd edn. Wiley (1971). MR0270403
[15] 
Gerber, H.: Mathematical fun with ruin theory. Insur. Math. Econ. 7(1), 15–23 (1988). MR0971860. https://doi.org/10.1016/0167-6687(88)90091-1
[16] 
Gerber, H.: Mathematical fun with the compound binomial process. ASTIN Bull. 18(2), 161–168 (1988). https://doi.org/10.2143/AST.18.2.2014949
[17] 
Grigutis, A.: Exact expression of ultimate time survival probability in homogeneous discrete-time risk model. AIMS Math. 8(3), 5181–5199 (2023). MR4525843. https://doi.org/10.3934/math.2023260
[18] 
Grigutis, A., Jankauskas, J.: On $2\times 2$ determinants originating from survival probabilities in homogeneous discrete time risk model. Results Math. 77(5), 204 (2022). MR4470312. https://doi.org/10.1007/s00025-022-01736-y
[19] 
Grigutis, A., Jankauskas, J., Šiaulys, J.: Multi seasonal discrete time risk model revisited. Lith. Math. J. 63, 466–486 (2023). MR4691924. https://doi.org/10.1007/s10986-023-09613-z
[20] 
Grigutis, A., Nakliuda, A.: Note on the bi-risk discrete time risk model with income rate two. Mod. Stoch. Theory Appl. 9(4), 401–412 (2022). MR4510380. https://doi.org/10.15559/22-vmsta209
[21] 
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012). MR2978290
[22] 
Wolfram Research, Inc. Mathematica, Version 14.0. Champaign, IL, 2024.
[23] 
Kendall, D.G.: The genealogy of genealogy branching processes before (and after) 1873. Bull. Lond. Math. Soc. 7(3), 225–253 (1975). 11. MR0426186. https://doi.org/10.1112/blms/7.3.225
[24] 
Landriault, D.: On a generalization of the expected discounted penalty function in a discrete-time insurance risk model. Appl. Stoch. Models Bus. Ind. 24(6), 525–539 (2008). MR2473024. https://doi.org/10.1002/asmb.713
[25] 
Lefèvre, C., Simon, M.: Schur-constant and related dependence models, with application to ruin probabilities. Methodol. Comput. Appl. Probab. 23, 317–339 (2021). MR4224918. https://doi.org/10.1007/s11009-019-09744-2
[26] 
Li, S., Huang, F., Jin, C.: Joint distributions of some ruin related quantities in the compound binomial risk model. Stoch. Models 29(4), 518–539 (2013). MR3175857. https://doi.org/10.1080/15326349.2013.847610
[27] 
Li, S., Lu, Y., Garrido, J.: A review of discrete-time risk models. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 103, 321–337 (2009). MR2582636. https://doi.org/10.1007/BF03191910
[28] 
Losidis, S.: Covariance between the forward recurrence time and the number of renewals. Mod. Stoch. Theory Appl. 9(1), 1–16 (2022). MR4388707. https://doi.org/10.15559/21-vmsta194
[29] 
Lundberg I, F.:. I. Approximerad Framstallning af Sannolikhetsfunktionen; II. Aterforsakring af Kollektivrisker. Dissertation Thesis, 1903. Swedish.
[30] 
Malkiel, B.G.: A Random Walk Down Wall Street. The Best Investment Tactic for the New Century. Norton & Company (2011)
[31] 
Martinsson, P.G., Tropp, J.A.: Randomized numerical linear algebra: Foundations and algorithms. Acta Numer. 29, 403–572 (2020). MR4189294. https://doi.org/10.1017/s0962492920000021
[32] 
Miao, Y., Sendova, K.P., Jones, B.L.: On a risk model with dual seasonalities. North Am. Actuar. J. 27(1), 166–184 (2023). MR4562596. https://doi.org/10.1080/10920277.2022.2068611
[33] 
Pearson, K.: The problem of the random walk. Nature 72, 294 (1905). https://doi.org/10.1038/072294b0
[34] 
Picard, P., Lefèvre, C.: Probabilité de ruine Éventuelle dans un modèle de risque à temps discret. J. Appl. Probab. 40(3), 543–556 (2003). MR1993252. https://doi.org/10.1239/jap/1059060887
[35] 
Pollaczek, F.: Order statistics of partial sums of mutually independent random variables. J. Appl. Probab. 12(2), 390–395 (1975). MR0378092. https://doi.org/10.2307/3212456
[36] 
Raducan, A.M., Vernic, R., Zbaganu, G.: Recursive calculation of ruin probabilities at or before claim instants for non-identically distributed claims. ASTIN Bull. 45(2), 421–443 (2015). MR3394025. https://doi.org/10.1017/asb.2014.30
[37] 
Santana, D.J., Rincón, L.: Ruin probabilities as functions of the roots of a polynomial. Mod. Stoch. Theory Appl. 10(3), 247–266 (2023). MR4608187. https://doi.org/10.15559/23-vmsta226
[38] 
Shiu, E.: Calculation of the probability of eventual ruin by beekman’s convolution series. Insur. Math. Econ. 7(1), 41–47 (1988). MR0971864. https://doi.org/10.1016/0167-6687(88)90095-9
[39] 
Shiu, E.: Ruin probability by operational calculus. Insur. Math. Econ. 8(3), 243–249 (1989). MR1031374. https://doi.org/10.1016/0167-6687(89)90060-7
[40] 
Spitzer, F.: A combinatorial lemma and its application to probability theory. Trans. Am. Math. Soc. 82, 323–339 (1956). MR0079851. https://doi.org/10.2307/1993051
[41] 
Spitzer, F.: Principles of Random Walk. Graduate Texts in Mathematics. Springer, Germany (1988). MR0388547
[42] 
Tzaninis, S.M.: Applications of a change of measures technique for compound mixed renewal processes to the ruin problem. Mod. Stoch. Theory Appl. 9(1), 45–64 (2022). MR4388709. https://doi.org/10.15559/21-vmsta192

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2024 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Multi-seasonal discrete-time risk model survival probability random walk initial values generating functions ruin theory

MSC2020
91G05 60G50 60J80

Metrics
since March 2018
535

Article info
views

136

Full article
views

156

PDF
downloads

58

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy