We introduce a branching process in a sparse random environment as an intermediate model between a Galton–Watson process and a branching process in a random environment. In the critical case we investigate the survival probability and prove Yaglom-type limit theorems, that is, limit theorems for the size of population conditioned on the survival event.
The main subject of the study in this paper is the simultaneous renewal time for two time-inhomogeneous Markov chains which start with arbitrary initial distributions. By a simultaneous renewal we mean the first time of joint hitting the specific set C by both processes. Under the condition of existence a dominating sequence for both renewal sequences generated by the chains and non-lattice condition for renewal probabilities an upper bound for the expectation of the simultaneous renewal time is obtained.
We deal with a generalization of the classical risk model when an insurance company gets additional funds whenever a claim arrives and consider some practical approaches to the estimation of the ruin probability. In particular, we get an upper exponential bound and construct an analogue to the De Vylder approximation for the ruin probability. We compare results of these approaches with statistical estimates obtained by the Monte Carlo method for selected distributions of claim sizes and additional funds.