Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 10, Issue 4 (2023)
  4. Critical branching processes in a sparse ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Critical branching processes in a sparse random environment
Volume 10, Issue 4 (2023), pp. 397–411
Dariusz Buraczewski ORCID icon link to view author Dariusz Buraczewski details   Congzao Dong   Alexander Iksanov ORCID icon link to view author Alexander Iksanov details   Alexander Marynych ORCID icon link to view author Alexander Marynych details  

Authors

 
Placeholder
https://doi.org/10.15559/23-VMSTA231
Pub. online: 29 August 2023      Type: Research Article      Open accessOpen Access

Received
11 June 2023
Revised
31 July 2023
Accepted
31 July 2023
Published
29 August 2023

Abstract

We introduce a branching process in a sparse random environment as an intermediate model between a Galton–Watson process and a branching process in a random environment. In the critical case we investigate the survival probability and prove Yaglom-type limit theorems, that is, limit theorems for the size of population conditioned on the survival event.

References

[1] 
Afanasyev, V., Geiger, J., Kersting, G., Vatutin, V.: Criticality for branching processes in random environment. Ann. Probab. 33(2), 645–673 (2005). doi:https://doi.org/10.1214/009117904000000928. MR2123206
[2] 
Athreya, K., Ney, P.: Branching Processes. Die Grundlehren der mathematischen Wissenschaften, Band 196, p. 287. Springer (1972). MR0373040
[3] 
Baum, L., Katz, M.: Convergence rates in the law of large numbers. Trans. Am. Math. Soc. 120, 108–123 (1965). doi:https://doi.org/10.2307/1994170. MR198524
[4] 
Buraczewski, D., Dyszewski, P., Kołodziejska, A.: Weak quenched limit theorems for a random walk in a sparse random environment. arXiv preprint arXiv:2301.00478 (2023).
[5] 
Buraczewski, D., Dyszewski, P., Iksanov, A., Marynych, A., Roitershtein, A.: Random walks in a moderately sparse random environment. Electron. J. Probab. 24, 69, 44 (2019). doi:https://doi.org/10.1214/19-EJP330. MR3978219
[6] 
Buraczewski, D., Dyszewski, P., Iksanov, A., Marynych, A.: Random walks in a strongly sparse random environment. Stoch. Process. Appl. 130(7), 3990–4027 (2020). doi:https://doi.org/10.1016/j.spa.2019.11.007. MR4102257
[7] 
Denisov, D., Foss, S., Korshunov, D.: Asymptotics of randomly stopped sums in the presence of heavy tails. Bernoulli 16(4), 971–994 (2010). doi:https://doi.org/10.3150/10-BEJ251. MR2759165
[8] 
Durrett, R., Iglehart, D., Miller, D.: Weak convergence to Brownian meander and Brownian excursion. Ann. Probab. 5(1), 117–129 (1977). doi:https://doi.org/10.1214/aop/1176995895. MR436353
[9] 
Faÿ, G., González-Arévalo, B., Mikosch, T., Samorodnitsky, G.: Modeling teletraffic arrivals by a Poisson cluster process. Queueing Syst. 54(2), 121–140 (2006). doi:https://doi.org/10.1007/s11134-006-9348-z. MR2268057
[10] 
Feller, W.: Fluctuation theory of recurrent events. Trans. Am. Math. Soc. 67, 98–119 (1949). doi:https://doi.org/10.2307/1990420. MR32114
[11] 
Kersting, G., Vatutin, V.: Discrete Time Branching Processes in Random Environment. John Wiley & Sons (2017). MR3587982
[12] 
Robert, C., Segers, J.: Tails of random sums of a heavy-tailed number of light-tailed terms. Insur. Math. Econ. 43(1), 85–92 (2008). doi:https://doi.org/10.1016/j.insmatheco.2007.10.001. MR2442033
[13] 
Smith, W., Wilkinson, W.: On branching processes in random environments. Ann. Math. Stat. 40, 814–827 (1969). doi:https://doi.org/10.1214/aoms/1177697589. MR246380
[14] 
Whitt, W.: Stochastic-process Limits: An Introduction to Stochastic-process Limits and Their Application to Queues. Springer Series in Operations Research, p. 602. Springer (2002). MR1876437

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2023 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Branching process functional limit theorem random environment survival probability

MSC2010
60J80 60F05

Funding
The research was supported by the High Level Talent Project DL2022174005L of Ministry of Science and Technology of PRC.

Metrics
since March 2018
572

Article info
views

181

Full article
views

324

PDF
downloads

99

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy