Critical branching processes in a sparse random environment
Volume 10, Issue 4 (2023), pp. 397–411
Pub. online: 29 August 2023
Type: Research Article
Open Access
Received
11 June 2023
11 June 2023
Revised
31 July 2023
31 July 2023
Accepted
31 July 2023
31 July 2023
Published
29 August 2023
29 August 2023
Abstract
We introduce a branching process in a sparse random environment as an intermediate model between a Galton–Watson process and a branching process in a random environment. In the critical case we investigate the survival probability and prove Yaglom-type limit theorems, that is, limit theorems for the size of population conditioned on the survival event.
References
Afanasyev, V., Geiger, J., Kersting, G., Vatutin, V.: Criticality for branching processes in random environment. Ann. Probab. 33(2), 645–673 (2005). doi:https://doi.org/10.1214/009117904000000928. MR2123206
Athreya, K., Ney, P.: Branching Processes. Die Grundlehren der mathematischen Wissenschaften, Band 196, p. 287. Springer (1972). MR0373040
Baum, L., Katz, M.: Convergence rates in the law of large numbers. Trans. Am. Math. Soc. 120, 108–123 (1965). doi:https://doi.org/10.2307/1994170. MR198524
Buraczewski, D., Dyszewski, P., Kołodziejska, A.: Weak quenched limit theorems for a random walk in a sparse random environment. arXiv preprint arXiv:2301.00478 (2023).
Buraczewski, D., Dyszewski, P., Iksanov, A., Marynych, A., Roitershtein, A.: Random walks in a moderately sparse random environment. Electron. J. Probab. 24, 69, 44 (2019). doi:https://doi.org/10.1214/19-EJP330. MR3978219
Buraczewski, D., Dyszewski, P., Iksanov, A., Marynych, A.: Random walks in a strongly sparse random environment. Stoch. Process. Appl. 130(7), 3990–4027 (2020). doi:https://doi.org/10.1016/j.spa.2019.11.007. MR4102257
Denisov, D., Foss, S., Korshunov, D.: Asymptotics of randomly stopped sums in the presence of heavy tails. Bernoulli 16(4), 971–994 (2010). doi:https://doi.org/10.3150/10-BEJ251. MR2759165
Durrett, R., Iglehart, D., Miller, D.: Weak convergence to Brownian meander and Brownian excursion. Ann. Probab. 5(1), 117–129 (1977). doi:https://doi.org/10.1214/aop/1176995895. MR436353
Faÿ, G., González-Arévalo, B., Mikosch, T., Samorodnitsky, G.: Modeling teletraffic arrivals by a Poisson cluster process. Queueing Syst. 54(2), 121–140 (2006). doi:https://doi.org/10.1007/s11134-006-9348-z. MR2268057
Feller, W.: Fluctuation theory of recurrent events. Trans. Am. Math. Soc. 67, 98–119 (1949). doi:https://doi.org/10.2307/1990420. MR32114
Kersting, G., Vatutin, V.: Discrete Time Branching Processes in Random Environment. John Wiley & Sons (2017). MR3587982
Robert, C., Segers, J.: Tails of random sums of a heavy-tailed number of light-tailed terms. Insur. Math. Econ. 43(1), 85–92 (2008). doi:https://doi.org/10.1016/j.insmatheco.2007.10.001. MR2442033
Smith, W., Wilkinson, W.: On branching processes in random environments. Ann. Math. Stat. 40, 814–827 (1969). doi:https://doi.org/10.1214/aoms/1177697589. MR246380
Whitt, W.: Stochastic-process Limits: An Introduction to Stochastic-process Limits and Their Application to Queues. Springer Series in Operations Research, p. 602. Springer (2002). MR1876437