The problem of estimating the drift parameter is considered for an Ornstein–Uhlenbeck-type process driven by a tempered fractional Brownian motion (tfBm) or tempered fractional Brownian motion of the second kind (tfBmII). Unlike most existing studies, which assume continuous-time observations, a more realistic setting of discrete-time data is in focus. The strong consistency of a discretized least squares estimator is established under an asymptotic regime where the observation interval tends to zero while the total time horizon increases. A key step in the analysis involves deriving almost sure upper bounds for the increments of both tfBm and tfBmII.
In this paper, we deal with an Ornstein–Uhlenbeck process driven by sub-fractional Brownian motion of the second kind with Hurst index $H\in (\frac{1}{2},1)$. We provide a least squares estimator (LSE) of the drift parameter based on continuous-time observations. The strong consistency and the upper bound $O(1/\sqrt{n})$ in Kolmogorov distance for central limit theorem of the LSE are obtained. We use a Malliavin–Stein approach for normal approximations.
A continuous-time regression model with a jointly strictly sub-Gaussian random noise is considered in the paper. Upper exponential bounds for probabilities of large deviations of the least squares estimator for the regression parameter are obtained.