Convergence rate of CLT for the drift estimation of sub-fractional Ornstein–Uhlenbeck process of second kind
Volume 8, Issue 3 (2021), pp. 329–347
Pub. online: 20 May 2021
Type: Research Article
Open Access
Received
8 October 2020
8 October 2020
Revised
3 March 2021
3 March 2021
Accepted
4 May 2021
4 May 2021
Published
20 May 2021
20 May 2021
Abstract
In this paper, we deal with an Ornstein–Uhlenbeck process driven by sub-fractional Brownian motion of the second kind with Hurst index $H\in (\frac{1}{2},1)$. We provide a least squares estimator (LSE) of the drift parameter based on continuous-time observations. The strong consistency and the upper bound $O(1/\sqrt{n})$ in Kolmogorov distance for central limit theorem of the LSE are obtained. We use a Malliavin–Stein approach for normal approximations.
References
Alazemi, F., Alsenafi, A., Es-Sebaiy, K.: Parameter estimation for Gaussian mean-reverting Ornstein-Uhlenbeck processes of the second kind: non-ergodic case. Stoch. Dyn. 19(5), 2050011 (25 pages) (2020). MR4080159. https://doi.org/10.1142/S0219493720500112
Azmoodeh, E., Morlanes, G.I.: Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the second kind. Statistics 49(1), 1–18 (2013). MR3304364. https://doi.org/10.1080/02331888.2013.863888
Azmoodeh, E., Viitasaari, L.: Parameter estimation based on discrete observations of fractional Ornstein-Uhlenbeck process of the second kind. Stat. Inference Stoch. Process. 18(3), 205–227 (2015). MR3395605. https://doi.org/10.1007/s11203-014-9111-8
Balde, M.F., Belfadli, R., Es-Sebaiy, K.: Berry-Esséen bound for drift estimation of fractional Ornstein-Uhlenbeck process of second kind (2020). preprint. arXiv:2005.08397. MR4128741. https://doi.org/10.1142/S0219493720500239
Bajja, S., Es-Sebaiy, K., Viitasaari, L.: Least squares estimator of fractional Ornstein-Uhlenbeck processes with periodic mean. J. Korean Stat. Soc. 46(4), 608–622 (2017). MR3718150. https://doi.org/10.1016/j.jkss.2017.06.002
Chronopoulou, A., Viens, F.: Stochastic volatility and option pricing with long-memory in discrete and continuous time. Quant. Finance 12, 635–649 (2012). MR2909603. https://doi.org/10.1080/14697688.2012.664939
Comte, F., Coutin, L., Renault, E.: Affine fractional stochastic volatility models. Ann. Finance 8, 337–378 (2012). MR2922801. https://doi.org/10.1007/s10436-010-0165-3
Chen, Y., Kuang, N., Li, Y.: Berry-Esséeen bound for the parameter estimation of fractional Ornstein-Uhlenbeck processes. Stoch. Dyn. 20(1), 2050023 (2019). MR4128741. https://doi.org/10.1142/S0219493720500239
Chen, Y., Li, Y.: Berry-Esséen bound for the parameter estimation of fractional Ornstein-Uhlenbeck processes with the hurst parameter $H\in (0,\frac{1}{2})$. Commun. Stat., Theory Methods, 1–18 (2019). https://doi.org/10.1080/03610926.2019.1704007
Douissi, S., Es-Sebaiy, K., Viens, F.: Berry-Esséen bounds for parameter estimation of general Gaussian processes. ALEA Lat. Am. J. Probab. Math. Stat. 16, 633–664 (2019). MR3949273. https://doi.org/10.30757/alea.v16-23
El Machkouri, M., Es-Sebaiy, K., Ouknine, Y.: Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes. J. Korean Stat. Soc. 45(3), 329–341 (2016). MR3527650. https://doi.org/10.1016/j.jkss.2015.12.001
El Onsy, B., Es-Sebaiy, K., Viens, F.: Parameter estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise. Stochastics 89(2), 431–468 (2017). MR3590429. https://doi.org/10.1080/17442508.2016.1248967
Hu, Y., Nualart, D.: Parameter estimation for fractional Ornstein Uhlenbeck processes. Stat. Probab. Lett. 80(11–12), 1030–1038 (2010). MR2638974. https://doi.org/10.1016/j.spl.2010.02.018
Kloeden, P., Neuenkirch, A.: The pathwise convergence of approximation schemes for stochastic differential equations. LMS J. Comput. Math. 10, 235–253 (2007). MR2320830. https://doi.org/10.1112/S1461157000001388
Kaarakka, T., Salminen, P.: On Fractional Ornstein-Uhlenbeck process. Commun. Stoch. Anal. 5, 121–133 (2011). MR2808539. https://doi.org/10.31390/cosa.5.1.08
Kim, Y.T., Park, H.S.: Optimal Berry-Esseen bound for statistical estimations and its application to SPDE. J. Multivar. Anal. 155, 284–304 (2017). MR3607896. https://doi.org/10.1016/j.jmva.2017.01.006
Kleptsyna, M., Le Breton, A.: Statistical analysis of the fractional Ornstein-Uhlenbeck type process. In: Statistical Inference for Stochastic Processes, vol. 5, pp. 229–241 (2002). MR1943832. https://doi.org/10.1023/A:1021220818545
Nourdin, I., Peccati, G.: Normal Approximations with Malliavin calculus: From Stein’s method to Universality. Cambridge University Press, (2012). MR2962301. https://doi.org/10.1017/CBO9781139084659
Nualart, D.: The Malliavin calculus and related topics, 2nd edn. Springer, Berlin (2006). MR2200233
Prakasa Rao, B.L.S.: Berry-Esseen type bound for fractional Ornstein-Uhlenbeck type process driven by sub-fractional Brownian motion. Theory Stoch. Process. 23(39), Issue 1, 82–92 (2018). MR3948508
Tudor, C.: On the Wiener integral with respect to a sub-fractional Brownian motion on an interval. J. Math. Anal. Appl. 351, 456–468 (2009). MR2472957. https://doi.org/10.1016/j.jmaa.2008.10.041