Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 8, Issue 3 (2021)
  4. Convergence rate of CLT for the drift es ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Convergence rate of CLT for the drift estimation of sub-fractional Ornstein–Uhlenbeck process of second kind
Volume 8, Issue 3 (2021), pp. 329–347
Maoudo Faramba Baldé   Khalifa Es-Sebaiy ORCID icon link to view author Khalifa Es-Sebaiy details  

Authors

 
Placeholder
https://doi.org/10.15559/21-VMSTA179
Pub. online: 20 May 2021      Type: Research Article      Open accessOpen Access

Received
8 October 2020
Revised
3 March 2021
Accepted
4 May 2021
Published
20 May 2021

Abstract

In this paper, we deal with an Ornstein–Uhlenbeck process driven by sub-fractional Brownian motion of the second kind with Hurst index $H\in (\frac{1}{2},1)$. We provide a least squares estimator (LSE) of the drift parameter based on continuous-time observations. The strong consistency and the upper bound $O(1/\sqrt{n})$ in Kolmogorov distance for central limit theorem of the LSE are obtained. We use a Malliavin–Stein approach for normal approximations.

1 Introduction

Let ${S^{H}}:=\left\{{S_{t}^{H}},t\ge 0\right\}$ be a sub-fractional Brownian motion (sub-fBm) with Hurst parameter $H\in (0,1)$ that is a centered Gaussian process, defined on a complete probability space $(\Omega ,\mathcal{F},P)$, with the covariance function
\[ E\left({S_{s}^{H}}{S_{t}^{H}}\right)={t^{2H}}+{s^{2H}}-\frac{1}{2}\left(|t-s{|^{2H}}+|t+s{|^{2H}}\right),\hspace{1em}s,t\ge 0.\]
Note that, when $H=\frac{1}{2}$, ${S^{\frac{1}{2}}}$ is a standard Brownian motion. We only refer to [21] for information about the sub-fBm and additional references.
Consider the sub-fractional Ornstein–Uhlenbeck process (sub-fOU) of the second kind, defined as the unique pathwise solution to
(1)
\[ \left\{\begin{aligned}{}& d{X_{t}}=-\theta {X_{t}}dt+d{Y_{t}},\hspace{1em}t\ge 0,\\ {} & {X_{0}}=0,\end{aligned}\right.\]
where ${Y_{t}}:={\textstyle\int _{0}^{t}}{e^{-s}}d{S_{{a_{s}}}^{H}}$ with ${a_{t}}=H{e^{\frac{t}{H}}}$, and ${S^{H}}$ is a sub-fBm with Hurst parameter $H\in (\frac{1}{2},1)$, whereas $\theta >0$ is considered as unknown parameter. Equivalently, X is the process given explicitly by
(2)
\[ {X_{t}}={e^{-\theta t}}{\int _{0}^{t}}{e^{\theta s}}d{Y_{s}},\]
where the integral with respect to Y can be understood in the Skorohod sense. When $H=\frac{1}{2}$, the process ${Y_{t}}={\textstyle\int _{0}^{t}}{e^{-s}}d{S_{{a_{s}}}^{\frac{1}{2}}}$ is a standard Brownian motion, by Lévy’s characterization theorem. Therefore, the process X given by (1) is a standard Ornstein–Uhlenbeck process. Notice also that the model (1) was originally introduced in [15], where the driving process is a fractional Brownian motion, and its definition is related to the Lamperti transform of the fractional Brownian motion.
Our aim is to estimate the parameter θ based the continuous observations of the process ${({X_{t}})_{t\ge 0}}$ given by (1). We will restrict to the case when $\theta >0$ since the case when $\theta <0$ has been treated in [1]. Throughout the paper we denote by ${\textstyle\int _{0}^{n}}{u_{t}}d{Y_{t}}$ the Skorohod integral (or, say, a divergence-type integral) with respect to the Gaussian process Y (see Preliminaries for definition). Let us recall the idea to construct the least squares estimator (LSE) for the drift coefficient θ, introduced in [13]. The LSE is obtained by minimizing
\[ \theta \longmapsto {\int _{0}^{n}}|{\dot{X}_{t}}+\theta {X_{t}}{|^{2}}dt.\]
In this way, we obtain the LSE proposed in (1.4) in the paper [13], which is defined by
(3)
\[ {\hat{\theta }_{n}}=\theta -\frac{{\textstyle\textstyle\int _{0}^{n}}{X_{t}}d{Y_{t}}}{{\textstyle\textstyle\int _{0}^{n}}{X_{t}^{2}}dt}.\]
In recent years, several researchers have been interested in studying statistical estimation problems for Gaussian Ornstein–Uhlenbeck processes. We aim to bring a new contribution to the statistical inference for fractional diffusions by estimating the drift parameter of a sub-fOU process of the second kind. Our paper is relevant to the literature on parameter estimation for processes with Gaussian long-memory processes, including [1–5, 8–10, 12, 13, 17, 20]. Estimation of the drift parameters for Ornstein–Uhlenbeck processes driven by fractional noise is a problem that is both well-motivated by practical needs and theoretically challenging. In the finance context, a practical motivation to study this estimation problem is to provide tools to understand volatility modeling in finance. Let us mention some important results in this field where the volatility exhibits long-memory, which means that the volatility today is correlated to past volatility values with a dependence that decays very slowly. Following the approach of [7], the authors of [6] considered the problem of option pricing under a stochastic volatility model that exhibits long-range dependence. More precisely they considered and analyzed the dynamics of the volatility that are described by the equation (1), where the driving process Y is replaced by a standard fractional Brownian motion (fBm) with Hurst parameter H greater than $1/2$.
The study of the asymptotic distribution of an estimator is not very useful in general for practical purposes unless the rate of convergence is known. As far as we know, no result of the Berry–Esséen type is known for the distribution of the LSE ${\hat{\theta }_{n}}$ of the drift parameter θ of the sub-fOU of the second kind (1).
In order to describe the asymptotic behavior of the LSE ${\hat{\theta }_{n}}$ when $n\to \infty $, we first need the following proposition given in [16, Corollary 1]. This result is proved based on techniques relied on the combination of Malliavin calculus and Stein’s method (see, e.g., [18]). More precisely, the authors of [16] provided an upper bound of the Kolmogorov distance for central limit theorem of sequences of the form ${F_{n}}/{G_{n}}$, where ${F_{n}}$ and ${G_{n}}$ are functionals of Gaussian fields.
In the following proposition, ${\mathfrak{H}^{\odot 2}}$ denote the symmetric tensor product.
Proposition 1 ([16]).
Let ${f_{n}},{g_{n}}\in {\mathfrak{H}^{\odot 2}}$ for all $n\ge 1$, and let ${b_{n}}$ be a positive function of n such that ${I_{2}}({g_{n}})+{b_{n}}>0$ almost surely for all $n\ge 1$. Define for all sufficiently large positive n,
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {\psi _{1}}(n)& \displaystyle :=& \displaystyle \frac{1}{{b_{n}^{2}}}\sqrt{{\left({b_{n}^{2}}-2\| {f_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}\right)^{2}}+8\| {f_{n}}{\otimes _{1}}{f_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}},\\ {} \displaystyle {\psi _{2}}(n)& \displaystyle :=& \displaystyle \frac{2}{{b_{n}^{2}}}\sqrt{2\| {f_{n}}{\otimes _{1}}{g_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}}+{\langle {f_{n}},{g_{n}}\rangle _{{\mathfrak{H}^{\otimes 2}}}^{2}}},\\ {} \displaystyle {\psi _{3}}(n)& \displaystyle :=& \displaystyle \frac{2}{{b_{n}^{2}}}\sqrt{\| {g_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{4}}+2\| {g_{n}}{\otimes _{1}}{g_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}}.\end{array}\]
Suppose that ${\psi _{i}}(n)\to 0$ for $i=1,2,3$, as $n\to \infty $. Then there exists a positive constant C such that for all sufficiently large positive n,
\[ \underset{z\in \mathbb{R}}{\sup }\left|\mathbb{P}\left(\frac{{I_{2}}({f_{n}})}{{I_{2}}({g_{n}})+{b_{n}}}\le z\right)-\mathbb{P}\left(Z\le z\right)\right|\le C\underset{i=1,2,3}{\max }{\psi _{i}}(n).\]
Let us now describe the results we prove in the present paper. First, in (4) we show that the strong consistency of the LSE ${\hat{\theta }_{n}}$ defined by (3), as $n\to \infty $. Then, in (5) we provide, when $H\in (\frac{1}{2},1)$, an upper bound of Kolmogorov distance for central limit theorem of the LSE ${\hat{\theta }_{n}}$.
Theorem 1.
Assume $H\in (\frac{1}{2},1)$ and let ${\hat{\theta }_{n}}$ be given by (3). Then, as $n\to \infty $,
(4)
\[ {\hat{\theta }_{n}}\longrightarrow \theta \hspace{1em}\textit{almost surely.}\]
Moreover, there exists a constant $0<C<\infty $, depending only on θ and H, such that for all sufficiently large positive n,
(5)
\[ \underset{z\in \mathbb{R}}{\sup }\left|P\left(\frac{\sqrt{n}}{{\sigma _{\theta ,H}}}\left(\theta -{\hat{\theta }_{n}}\right)\le z\right)-P\left(Z\le z\right)\right|\le \frac{C}{\sqrt{n}},\]
where Z denotes a standard normal random variable, and the positive constant ${\sigma _{\theta ,H}}$ is given by
(6)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {\sigma _{\theta ,H}}& \displaystyle :=& \displaystyle \frac{\theta \sqrt{2{\textstyle\int _{{(0,\infty )^{3}}}}F({y_{1}},{y_{2}},{y_{3}})d{y_{1}}d{y_{2}}d{y_{3}}}}{H\left[\beta (H\theta +1-H,2H-1)-k(\theta ,H)\right]}<\infty ,\end{array}\]
with β denoting the classical Beta function, ${\sigma _{\theta ,H}}<\infty $ (due to [3] and $0\le |x-y{|^{2H-2}}-|x+y{|^{2H-2}}\le |x-y{|^{2H-2}}$ for very $x,y\ge 0$), whereas the function F is defined by
(7)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle F({y_{1}},{y_{2}},{y_{3}})\\ {} & & \displaystyle :={e^{-\theta |{y_{1}}-{y_{3}}|}}{e^{-\theta {y_{2}}}}{e^{(1-\frac{1}{H})({y_{1}}+{y_{2}}+{y_{3}})}}\left({\left|1-{e^{-\frac{{y_{1}}}{H}}}\right|^{2H-2}}-{\left|1+{e^{-\frac{{y_{1}}}{H}}}\right|^{2H-2}}\right)\\ {} & & \displaystyle \hspace{42.67912pt}\times \left({\left|{e^{-\frac{{y_{2}}}{H}}}-{e^{-\frac{{y_{3}}}{H}}}\right|^{2H-2}}-{\left|{e^{-\frac{{y_{2}}}{H}}}+{e^{-\frac{{y_{3}}}{H}}}\right|^{2H-2}}\right).\hspace{2.5pt}\end{array}\]
The rest of the paper is structured as follows. Section 2 presents some basic elements of Malliavin calculus which are helpful for some of the arguments we use throughout the paper. Section 3 is devoted to the proof of Theorem 1.
Throughout the paper Z denotes a standard normal random variable, and C denotes a generic positive constant (perhaps depending on θ and H, but not on anything else), which may change from line to line.

2 Preliminaries

In this section, we briefly recall some basic elements of Gaussian analysis, and Malliavin calculus which are helpful for some of the arguments we use throughout the paper. For more details we refer to [18] and [19].
Consider the Gaussian process ${Y_{t}}={\textstyle\int _{0}^{t}}{e^{-s}}d{S_{{a_{s}}}^{H}}$, $t\ge 0$, with ${a_{t}}=H{e^{\frac{t}{H}}}$. Assume that $\frac{1}{2}<H<1$. Setting ${a_{u}^{-1}}=H\log (u/H)$, it follows from [5] that, for every f, g in ${\mathcal{C}^{1}}$,
(8)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle E\left({\int _{s}^{t}}f(r)d{Y_{r}}{\int _{u}^{v}}g(r)d{Y_{r}}\right)\\ {} & & \displaystyle =H(2H-1){\int _{{a_{s}}}^{{a_{t}}}}{\int _{{a_{u}}}^{{a_{v}}}}f({a_{x}^{-1}})g({a_{y}^{-1}}){e^{-{a_{x}^{-1}}-{a_{y}^{-1}}}}\\ {} & & \displaystyle \hspace{99.58464pt}\Big[|x-y{|^{2H-2}}-{(x+y)^{2H-2}}\Big]dxdy\hspace{2.5pt}\hspace{2.5pt}\end{array}\]
(9)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle ={\int _{s}^{t}}{\int _{u}^{v}}f(w)g(z){r_{H}}(w,z)dwdz,\end{array}\]
where ${r_{H}}(x,y)$ is a symmetric kernel given by
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {r_{H}}(w,z)& \displaystyle =& \displaystyle {H^{2H-1}}(2H-1){({a_{w}}{a_{z}})^{1-H}}\Big[{\left|{a_{w}}-{a_{z}}\right|^{2H-2}}-{\left|{a_{w}}+{a_{z}}\right|^{2H-2}}\Big]\\ {} & \displaystyle =& \displaystyle {H^{2H-1}}(2H-1){\left({e^{w/H}}{e^{z/H}}\right)^{1-H}}\\ {} & & \displaystyle \hspace{28.45274pt}\times \Big[{\left|{e^{w/H}}-{e^{z/H}}\right|^{2H-2}}-{\left|{e^{w/H}}+{e^{z/H}}\right|^{2H-2}}\Big].\end{array}\]
In particular, we obtain the following covariance:
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle E\left(({Y_{t}}-{Y_{s}})({Y_{v}}-{Y_{u}})\right)& \displaystyle =& \displaystyle {\int _{s}^{t}}{\int _{u}^{v}}{r_{H}}(w,z)dwdz.\end{array}\]
Fix a time interval $[0,T]$. We denote by $\mathfrak{H}$ the canonical Hilbert space associated to the Gaussian process Y. It is the closure of the linear span $\mathcal{E}$ generated by the indicator functions ${1_{[0,t]}}$, $t\in [0,T]$, with respect to the inner product
\[ {\langle {1_{[s,t]}},{1_{[u,v]}}\rangle _{\mathfrak{H}}}=E\left(({Y_{t}}-{Y_{s}})({Y_{v}}-{Y_{u}})\right).\]
The mapping ${1_{[0,t]}}\mapsto {Y_{t}}$ can be extended to a linear isometry between $\mathfrak{H}$ and the Gaussian space ${\mathcal{H}_{1}}$ spanned by Y. We denote this isometry by $\varphi \in \mathfrak{H}\mapsto Y(\varphi )$.
For $\frac{1}{2}<H<1$, we introduce $|\mathfrak{H}|$ as the set of measurable functions φ on $[0,T]$ such that
\[ \| \varphi {\| _{|\mathfrak{H}|}^{2}}:={\int _{0}^{T}}{\int _{0}^{T}}|\varphi (u)||\varphi (v)|{r_{H}}(u,v)dudv<\infty .\]
Note that, if $\varphi ,\psi \in |\mathfrak{H}|$,
\[ E(Y(\varphi )Y(\psi ))={\int _{0}^{T}}{\int _{0}^{T}}\varphi (u)\psi (v){r_{H}}(u,v)dudv.\]
The space $|\mathfrak{H}|$ is a Banach space with the norm $\| .{\| _{|\mathfrak{H}|}}$ and it is included in $\mathfrak{H}$. Let ${\mathrm{C}_{b}^{\infty }}({\mathbb{R}^{n}},\mathbb{R})$ be the class of infinitely differentiable functions $f:{\mathbb{R}^{n}}\longrightarrow \mathbb{R}$ such that f and all its partial derivatives are bounded. We denote by $\mathcal{S}$ the class of smooth cylindrical random variables G of the form
(10)
\[ F=f(Y({\varphi _{1}}),\dots ,Y({\varphi _{n}})),\]
where $n\ge 1$, $f\in {\mathrm{C}_{b}^{\infty }}({\mathbb{R}^{n}},\mathbb{R})$ and ${\varphi _{1}},\dots ,{\varphi _{n}}\in \mathfrak{H}$.
The derivative operator D of a smooth cylindrical random variable G of the form (10) is defined as the $\mathfrak{H}$-valued random variable
\[ DG={\sum \limits_{i=1}^{n}}\frac{\partial f}{\partial {x_{i}}}(Y({\varphi _{1}}),\dots ,Y({\varphi _{n}})){\varphi _{i}}.\]
In this way the derivative $DG$ is an element of ${L^{2}}(\Omega ;\mathfrak{H})$. We denote by ${D^{1,2}}$ the closure of $\mathcal{S}$ with respect to the norm defined by
\[ \| G{\| _{1,2}^{2}}=E({G^{2}})+E(\| DG{\| _{\mathfrak{H}}^{2}}).\]
The divergence operator δ is the adjoint of the derivative operator D. Concretely, a random variable $u\in {L^{2}}(\Omega ;\mathfrak{H})$ belongs to the domain of the divergence operator $Dom\delta $ if
\[ E\left|{\langle DG,u\rangle _{\mathfrak{H}}}\right|\le {c_{u}}\| G{\| _{{L^{2}}(\Omega )}}\]
for every $G\in \mathcal{S}$, where ${c_{u}}$ is a constant which depends only on u. In this case $\delta (u)$ is given by the duality relation
\[ E(G\delta (u))=E{\left<DG,u\right>_{\mathfrak{H}}}\]
for any $F\in {D^{1,2}}$. We will make use of the notation
\[ \delta (u)={\int _{0}^{T}}{u_{s}}d{Y_{s}},\hspace{1em}u\in Dom\delta .\]
In particular, for $h\in \mathfrak{H}$, $Y(h)=\delta (h)={\textstyle\int _{0}^{T}}{h_{s}}d{Y_{s}}$.
For every $n\ge 1$, let ${\mathfrak{H}_{n}}$ be the nth Wiener chaos of B, that is, the closed linear subspace of ${L^{2}}(\Omega )$ generated by the random variables $\{{H_{n}}(Y(h)),h\in \mathfrak{H},\| h{\| _{\mathfrak{H}}}=1\}$ where ${H_{n}}$ is the nth Hermite polynomial. The mapping ${I_{n}}({h^{\otimes n}})=n!{H_{n}}(Y(h))$ provides a linear isometry between the symmetric tensor product ${\mathfrak{H}^{\odot n}}$ (equipped with the modified norm $\| .{\| _{{\mathfrak{H}^{\odot n}}}}=\sqrt{n!}\| .{\| _{{\mathfrak{H}^{\otimes n}}}}$) and ${\mathfrak{H}_{n}}$. For every $f,g\in {\mathfrak{H}^{\odot n}}$ the following product formula holds
\[ E\left({I_{n}}(f){I_{n}}(g)\right)=n!{\langle f,g\rangle _{{\mathfrak{H}^{\otimes n}}}}.\]
Notice that for every nonrandom Hölder continuous function φ of order $\alpha \in (1-H,1)$, we have
(11)
\[ {\int _{0}^{t}}{\varphi _{s}}d{Y_{s}}={\int _{0}^{t}}{\varphi _{s}}d{Y_{s}}=Y(\varphi ).\]
For a smooth and cylindrical random variable $F=\left(Y({\varphi _{1}}),\dots ,Y({\varphi _{n}})\right)$, with ${\varphi _{i}}\in \mathfrak{H}$, $i=1,\dots ,n$, and $f\in {\mathcal{C}_{b}^{\infty }}({\mathbb{R}^{n}})$ (f and all of its partial derivatives are bounded), we define its Malliavin derivative as the $\mathfrak{H}$-valued random variable given by
\[ DF={\sum \limits_{i=1}^{n}}\frac{\partial f}{\partial {x_{i}}}\left(Y({\varphi _{1}}),\dots ,Y({\varphi _{n}})\right){\varphi _{i}}.\]
For every $q\ge 1$, ${\mathcal{H}_{q}}$ denotes the qth Wiener chaos of Y, defined as the closed linear subspace of ${L^{2}}(\Omega )$ generated by the random variables $\{{H_{q}}(Y(h)),h\hspace{0.1667em}\in \hspace{0.1667em}\mathfrak{H},\| h{\| _{\mathfrak{H}}}=1\}$ where ${H_{q}}$ is the qth Hermite polynomial. Wiener chaoses of different orders are orthogonal in ${L^{2}}\left(\Omega \right)$.
The mapping ${I_{q}}({h^{\otimes q}}):=q!{H_{q}}(Y(h))$ is a linear isometry between the symmetric tensor product ${\mathfrak{H}^{\odot q}}$ (equipped with the modified norm $\| .{\| _{{\mathfrak{H}^{\odot q}}}}=\sqrt{q!}\| .{\| _{{\mathfrak{H}^{\otimes q}}}}$) and ${\mathcal{H}_{q}}$. For every $f,g\in {\mathfrak{H}^{\odot q}}$ the following extended isometry property holds
\[ E\left({I_{q}}(f){I_{q}}(g)\right)=q!{\langle f,g\rangle _{{\mathfrak{H}^{\otimes q}}}}.\]
We will only need to know the product formula for $q=1$ (see [18, Section 2.7.3]), which is
(12)
\[ {I_{1}}(f){I_{1}}(g)={I_{2}}\left(f\otimes g\right)+{\langle f,g\rangle _{\mathfrak{H}}}.\]
Let $\{{e_{k}},k\ge 1\}$ be a complete orthonormal system in the Hilbert space $\mathfrak{H}$. Given $f\in {\mathfrak{H}^{\odot n}}$, $g\in {\mathfrak{H}^{\odot m}}$, and $p=1,\dots ,n\wedge m$, the pth contraction between f and g is the element of ${\mathfrak{H}^{\otimes (m+n-2p)}}$ defined by
\[ f{\otimes _{p}}g={\sum \limits_{{i_{1}},\dots ,{i_{p}}=1}^{\infty }}{\langle f,{e_{{i_{1}}}}\otimes \cdots \otimes {e_{{i_{p}}}}\rangle _{{\mathfrak{H}^{\otimes p}}}}\otimes {\langle g,{e_{{i_{1}}}}\otimes \cdots \otimes {e_{{i_{p}}}}\rangle _{{\mathfrak{H}^{\otimes p}}}}.\]
Let us also recall the hypercontractivity property in Wiener chaos. For $h\in {\mathfrak{H}^{\otimes q}}$, the multiple Wiener integrals ${I_{q}}(h)$, which exhaust the set ${\mathfrak{H}_{q}}$, satisfy a hypercontractivity property (equivalence in ${\mathfrak{H}_{q}}$ of all ${L^{p}}$ norms for all $p\ge 2$), which implies that for any $G\in {\oplus _{l=1}^{q}}{\mathfrak{H}_{l}}$ (i.e. in a fixed sum of Wiener chaoses), we have
(13)
\[ {\left(E\big[|G{|^{p}}\big]\right)^{1/p}}\leqslant {c_{p,q}}{\left(E\big[|G{|^{2}}\big]\right)^{1/2}}\hspace{2.5pt}\hspace{2.5pt}\text{for any}\hspace{2.5pt}p\ge 2.\]
It should be noted that the constants ${c_{p,q}}$ above are known with some precision when G is a single chaos term: indeed, by Corollary 2.8.14 in [18], ${c_{p,q}}={\left(p-1\right)^{q/2}}$.
The following result is a direct consequence of the Borel–Cantelli Lemma (the proof is elementary; see, e.g., [14, Lemma 2.1]). It is convenient for establishing almost sure convergences from ${L^{p}}$ convergences.
Lemma 1.
Let $\gamma >0$. Let ${({Z_{n}})_{n\ge 1}}$ be a sequence of random variables. If for every $p\ge 1$ there exists a constant ${c_{p}}>0$ such that for all $n\ge 1$,
\[ \| {Z_{n}}{\| _{{L^{p}}(\Omega )}}\leqslant {c_{p}}\cdot {n^{-\gamma }},\]
then for all $\varepsilon >0$ there exists a random variable ${\alpha _{\varepsilon }}$ which is almost surely finite such that
\[ |{Z_{n}}|\leqslant {\alpha _{\varepsilon }}\cdot {n^{-\gamma +\varepsilon }}\hspace{1em}\textit{almost surely}\]
for all $n\ge 1$. Moreover, $E|{\alpha _{\varepsilon }}{|^{p}}<\infty $ for all $p\ge 1$.

3 Proof of Theorem 1

From (3) we can write
(14)
\[ \theta -{\hat{\theta }_{n}}=\frac{{\textstyle\textstyle\int _{0}^{n}}{X_{t}}d{Y_{t}}}{{\textstyle\textstyle\int _{0}^{n}}{X_{t}^{2}}dt}.\]
It follows from (2) that
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle \frac{1}{\sqrt{n}}{\int _{0}^{n}}{X_{t}}d{Y_{t}}& \displaystyle =& \displaystyle {I_{2}}\left({h_{n}}\right),\end{array}\]
with
(15)
\[ {h_{n}}(s,t):=\frac{1}{2\sqrt{n}}{e^{-\theta |t-s|}}{1_{{[0,n]^{2}}}}(s,t).\]
On the other hand, using the product formula (12),
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {X_{t}^{2}}& \displaystyle =& \displaystyle {\left({I_{1}}\left({e^{-\theta (t-.)}}{1_{[0,t]}}(.)\right)\right)^{2}}\\ {} & \displaystyle =& \displaystyle {I_{2}}\left({e^{-2\theta t}}{e^{\theta u}}{e^{\theta v}}{1_{{[0,t]^{2}}}}(u,v)\right)+{\left\| {e^{-\theta (t-.)}}{1_{[0,t]}}(.)\right\| _{\mathfrak{H}}^{2}}.\end{array}\]
Let us introduce the positive constant
(16)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle {\rho _{\theta ,H}}:=\frac{{H^{2H}}(2H-1)}{\theta }\Big[\beta (H\theta +1-H,2H-1)-k(\theta ,H)\Big],\end{array}\]
with
\[ k(\theta ,H):={\int _{0}^{1}}{u^{H\theta -H}}{(1+u)^{2H-2}}du.\]
Thus
(17)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle \frac{1}{n{\rho _{\theta ,H}}}{\int _{0}^{n}}{X_{t}^{2}}dt& \displaystyle =& \displaystyle {I_{2}}\left(\frac{1}{n{\rho _{\theta ,H}}}{\int _{0}^{n}}{e^{-2\theta t}}{e^{\theta u}}{e^{\theta v}}{1_{{[0,t]^{2}}}}(u,v)dt\right)\\ {} & & \displaystyle \hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}+\hspace{2.5pt}\frac{1}{n{\rho _{\theta ,H}}}{\int _{0}^{n}}{e^{-2\theta t}}{\left\| {e^{\theta u}}{1_{[0,t]}}(u)\right\| _{\mathfrak{H}}^{2}}dt\\ {} & \displaystyle =:& \displaystyle {I_{2}}({g_{n}})+{b_{n}},\end{array}\]
where
(18)
\[ {b_{n}}:=\frac{1}{n{\rho _{\theta ,H}}}{\int _{0}^{n}}{e^{-2\theta t}}{\left\| {e^{\theta u}}{1_{[0,t]}}(u)\right\| _{\mathfrak{H}}^{2}}dt,\]
and
(19)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {g_{n}}(u,v)& \displaystyle :=& \displaystyle \frac{1}{n{\rho _{\theta ,H}}}{e^{\theta u}}{e^{\theta v}}\frac{{e^{-2\theta (u\vee v)}}-{e^{-2\theta n}}}{2\theta }{1_{{[0,n]^{2}}}}(u,v)\\ {} & \displaystyle =& \displaystyle \frac{1}{2\theta {\rho _{\theta ,H}}n}\left({e^{-\theta |u-v|}}-{e^{-2\theta n}}{e^{\theta u}}{e^{\theta v}}\right){1_{{[0,n]^{2}}}}(u,v)\\ {} & \displaystyle =& \displaystyle \frac{1}{\theta {\rho _{\theta ,H}}\sqrt{n}}{h_{n}}(u,v)-{l_{n}}(u,v),\end{array}\]
with ${h_{n}}$ given by (15), and
\[ {l_{n}}(u,v):=\frac{1}{2n\theta {\rho _{\theta ,H}}}{e^{-2\theta n}}{e^{\theta u}}{e^{\theta v}}{1_{{[0,n]^{2}}}}(u,v).\]
Therefore, combining (14), (15) and (17), we get
(20)
\[ \frac{\sqrt{n}}{{\sigma _{\theta ,H}}}\left(\theta -{\hat{\theta }_{n}}\right)=\frac{{I_{2}}({f_{n}})}{{I_{2}}({g_{n}})+{b_{n}}},\]
where ${\sigma _{\theta ,H}}$ is given by (6), and
(21)
\[ {f_{n}}:=\frac{1}{{\rho _{\theta ,H}}{\sigma _{\theta ,H}}}{h_{n}}.\]
In order to prove our main result we make use of the following technical lemmas.
Lemma 2.
Let $H\in (\frac{1}{2},1)$, and let ${b_{n}}$ and ${f_{n}}$ be the functions given by (18) and (21), respectively. Then, for all $n\ge 1$,
(22)
\[ |{b_{n}}-1|\le \frac{C}{n},\]
(23)
\[ \left|1-2\| {f_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}\right|\le \frac{C}{n}.\]
Consequently, for all $n\ge 1$,
\[ \left|{b_{n}^{2}}-2\| {f_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}\right|\le \frac{C}{n}.\]
Proof.
Using (8) and making the change of variables $u=x/y$, we get
(24)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle {\left\| {e^{\theta u}}{1_{[0,t]}}(u)\right\| _{\mathfrak{H}}^{2}}\\ {} & & \displaystyle =H(2H-1){\int _{{a_{0}}}^{{a_{t}}}}{\int _{{a_{0}}}^{{a_{t}}}}{(x/H)^{H\theta -H}}{(y/H)^{H\theta -H}}\\ {} & & \displaystyle \hspace{113.81102pt}\Big[|x-y{|^{2H-2}}-{(x+y)^{2H-2}}\Big]dxdy\\ {} & & \displaystyle =2{H^{2H(1-\theta )+1}}(2H-1){\int _{{a_{0}}}^{{a_{t}}}}{y^{2H\theta -1}}{\int _{{a_{0}}/y}^{1}}{u^{H\theta -H}}\\ {} & & \displaystyle \hspace{170.71652pt}\Big[|1-u{|^{2H-2}}-{(1+u)^{2H-2}}\Big]dudy\\ {} & & \displaystyle =2{H^{2H(1-\theta )+1}}(2H-1){\int _{{a_{0}}}^{{a_{t}}}}{y^{2H\theta -1}}{\int _{0}^{1}}{u^{H\theta -H}}\\ {} & & \displaystyle \hspace{170.71652pt}\Big[|1-u{|^{2H-2}}-{(1+u)^{2H-2}}\Big]dudy\\ {} & & \displaystyle \hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}-2{H^{2H(1-\theta )+1}}(2H-1){\int _{{a_{0}}}^{{a_{t}}}}{y^{2H\theta -1}}{\int _{0}^{{a_{0}}/y}}{u^{H\theta -H}}\\ {} & & \displaystyle \hspace{170.71652pt}\Big[|1-u{|^{2H-2}}-{(1+u)^{2H-2}}\Big]dudy\\ {} & & \displaystyle :={A_{t}}-{B_{t}},\end{array}\]
where
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {A_{t}}& \displaystyle =& \displaystyle 2{H^{2H(1-\theta )+1}}(2H-1){\int _{{a_{0}}}^{{a_{t}}}}{y^{2H\theta -1}}dy\\ {} & & \displaystyle \hspace{56.9055pt}\times \Big({\int _{0}^{1}}{u^{H\theta -H}}\left[|1-u{|^{2H-2}}-{(1+u)^{2H-2}}\right]du\Big)\\ {} & \displaystyle =& \displaystyle 2{H^{2H(1-\theta )+1}}(2H-1)\Big[\beta (H\theta +1-H,2H-1)-k(\theta ,H)\Big]\\ {} & & \displaystyle \hspace{170.71652pt}\times {\int _{{a_{0}}}^{{a_{t}}}}{y^{2H\theta -1}}dy\\ {} & \displaystyle =& \displaystyle \frac{{H^{2H}}(2H-1)}{\theta }\Big[\beta (H\theta +1-H,2H-1)-k(\theta ,H)\Big]({e^{2\theta t}}-1).\end{array}\]
Moreover,
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle \frac{1}{n}{\int _{0}^{n}}{e^{-2\theta t}}{A_{t}}dt& \displaystyle =& \displaystyle \frac{{H^{2H}}(2H-1)}{\theta }\Big[\beta (H\theta +1-H,2H-1)-k(\theta ,H)\Big]\\ {} & & \displaystyle \hspace{113.81102pt}\times \left(1+\frac{{e^{-2\theta n}}-1}{2\theta n}\right).\end{array}\]
Thus
(25)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle \left|\frac{1}{n{\rho _{\theta ,H}}}{\int _{0}^{n}}{e^{-2\theta t}}{A_{t}}dt-1\right|& \displaystyle =& \displaystyle \frac{1-{e^{-2\theta n}}}{2\theta n}\le \frac{1}{2\theta n}.\end{array}\]
On the other hand,
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle |{B_{t}}|& \displaystyle \le & \displaystyle 2{H^{2H(1-\theta )+1}}(2H-1){\int _{{a_{0}}}^{{a_{t}}}}{y^{2H\theta -1}}\\ {} & & \displaystyle \hspace{56.9055pt}\times {\int _{0}^{{a_{0}}/y}}{u^{H\theta -H}}\Big||1-u{|^{2H-2}}-{(1+u)^{2H-2}}\Big|dudy\\ {} & \displaystyle \le & \displaystyle 2{H^{2H(1-\theta )+1}}(2H-1){\int _{{a_{0}}}^{{a_{t}}}}{y^{2H\theta -1}}{\int _{0}^{{a_{0}}/y}}{u^{H\theta -H}}|1-u{|^{2H-2}}dudy\\ {} & \displaystyle \le & \displaystyle 2{H^{2H(1-\theta )+1}}(2H-1){\int _{{a_{0}}}^{{a_{t}}}}{y^{2H\theta -1}}{({a_{0}}/y)^{H\theta }}{\int _{0}^{{a_{0}}/y}}{u^{-H}}\\ {} & & \displaystyle \hspace{202.01474pt}{(1-u)^{2H-2}}dudy\\ {} & \displaystyle \le & \displaystyle 2{H^{2H-\theta H+1}}(2H-1){\int _{{a_{0}}}^{{a_{t}}}}{y^{H\theta -1}}dy{\int _{0}^{1}}{u^{-H}}{(1-u)^{2H-2}}du\\ {} & \displaystyle =& \displaystyle 2{H^{2H+1}}(2H-1)\beta (1-H,2H-1)\frac{{e^{\theta t}}-1}{H\theta }\\ {} & \displaystyle \le & \displaystyle C{e^{\theta t}}.\end{array}\]
Hence,
(26)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle \frac{1}{n{\rho _{\theta ,H}}}{\int _{0}^{n}}{e^{-2\theta t}}|{B_{t}}|dt& \displaystyle \le & \displaystyle \frac{C}{n}{\int _{0}^{n}}{e^{-\theta t}}dt\le \frac{C}{n}.\end{array}\]
Therefore, combining (24), (25) and (26), we deduce (22).
Now let us prove (23). First we decompose the integral ${\textstyle\int _{{[0,n]^{4}}}}$ into
(27)
\[ {\int _{{[0,n]^{4}}}}={\int _{{\cup _{i=1}^{5}}{A_{i,n}}}}={\sum \limits_{i=1}^{5}}{\int _{{A_{i,n}}}},\]
where
\[\begin{array}{l}\displaystyle {A_{1,n}}={\cup _{i=1}^{8}}{D_{i,n}},\hspace{2.5pt}{A_{2,n}}={\cup _{i=9}^{12}}{D_{i,n}},\hspace{2.5pt}{A_{3,n}}={\cup _{i=13}^{16}}{D_{i,n}},\\ {} \displaystyle \hspace{2.5pt}{A_{4,n}}={\cup _{i=17}^{20}}{D_{i,n}},\hspace{2.5pt}{A_{5,n}}={\cup _{i=21}^{24}}{D_{i,n}},\end{array}\]
with
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {D_{1,n}}& \displaystyle :=& \displaystyle \{0<{x_{1}}<{x_{2}}<{x_{3}}<{x_{4}}<n\}\\ {} \displaystyle {D_{2,n}}& \displaystyle :=& \displaystyle \{0<{x_{1}}<{x_{2}}<{x_{4}}<{x_{3}}<n\}\\ {} \displaystyle {D_{3,n}}& \displaystyle :=& \displaystyle \{0<{x_{2}}<{x_{1}}<{x_{3}}<{x_{4}}<n\}\\ {} \displaystyle {D_{4,n}}& \displaystyle :=& \displaystyle \{0<{x_{2}}<{x_{1}}<{x_{4}}<{x_{3}}<n\}\\ {} \displaystyle {D_{5,n}}& \displaystyle :=& \displaystyle \{0<{x_{3}}<{x_{4}}<{x_{1}}<{x_{2}}<n\}\\ {} \displaystyle {D_{6,n}}& \displaystyle :=& \displaystyle \{0<{x_{3}}<{x_{4}}<{x_{2}}<{x_{1}}<n\}\\ {} \displaystyle {D_{7,n}}& \displaystyle :=& \displaystyle \{0<{x_{4}}<{x_{3}}<{x_{1}}<{x_{2}}<n\}\\ {} \displaystyle {D_{8,n}}& \displaystyle :=& \displaystyle \{0<{x_{4}}<{x_{3}}<{x_{2}}<{x_{1}}<n\},\\ {} \displaystyle {D_{9,n}}& \displaystyle :=& \displaystyle \{0<{x_{1}}<{x_{3}}<{x_{2}}<{x_{4}}<n\}\\ {} \displaystyle {D_{10,n}}& \displaystyle :=& \displaystyle \{0<{x_{3}}<{x_{1}}<{x_{4}}<{x_{2}}<n\}\\ {} \displaystyle {D_{11,n}}& \displaystyle :=& \displaystyle \{0<{x_{2}}<{x_{4}}<{x_{1}}<{x_{3}}<n\}\\ {} \displaystyle {D_{12,n}}& \displaystyle :=& \displaystyle \{0<{x_{4}}<{x_{2}}<{x_{3}}<{x_{1}}<n\},\\ {} \displaystyle {D_{13,n}}& \displaystyle :=& \displaystyle \{0<{x_{1}}<{x_{3}}<{x_{4}}<{x_{2}}<n\}\\ {} \displaystyle {D_{14,n}}& \displaystyle :=& \displaystyle \{0<{x_{3}}<{x_{1}}<{x_{2}}<{x_{4}}<n\}\\ {} \displaystyle {D_{15,n}}& \displaystyle :=& \displaystyle \{0<{x_{2}}<{x_{4}}<{x_{3}}<{x_{1}}<n\}\\ {} \displaystyle {D_{16,n}}& \displaystyle :=& \displaystyle \{0<{x_{4}}<{x_{2}}<{x_{1}}<{x_{3}}<n\},\\ {} \displaystyle {D_{17,n}}& \displaystyle :=& \displaystyle \{0<{x_{1}}<{x_{4}}<{x_{2}}<{x_{3}}<n\}\\ {} \displaystyle {D_{18,n}}& \displaystyle :=& \displaystyle \{0<{x_{4}}<{x_{1}}<{x_{3}}<{x_{2}}<n\}\\ {} \displaystyle {D_{19,n}}& \displaystyle :=& \displaystyle \{0<{x_{2}}<{x_{3}}<{x_{1}}<{x_{4}}<n\}\\ {} \displaystyle {D_{20,n}}& \displaystyle :=& \displaystyle \{0<{x_{3}}<{x_{2}}<{x_{4}}<{x_{1}}<n\},\\ {} \displaystyle {D_{21,n}}& \displaystyle :=& \displaystyle \{0<{x_{1}}<{x_{4}}<{x_{3}}<{x_{2}}<n\}\\ {} \displaystyle {D_{22,n}}& \displaystyle :=& \displaystyle \{0<{x_{4}}<{x_{1}}<{x_{2}}<{x_{3}}<n\}\\ {} \displaystyle {D_{23,n}}& \displaystyle :=& \displaystyle \{0<{x_{3}}<{x_{2}}<{x_{1}}<{x_{4}}<n\}\\ {} \displaystyle {D_{24,n}}& \displaystyle :=& \displaystyle \{0<{x_{2}}<{x_{3}}<{x_{4}}<{x_{1}}<n\}.\end{array}\]
Therefore, using (9), (27), and setting
\[ {m_{H}}({x_{1}},{x_{2}},{x_{3}},{x_{4}}):={e^{-\theta |{x_{1}}-{x_{3}}|}}{e^{-\theta |{x_{2}}-{x_{4}}|}}{r_{H}}({x_{1}},{x_{2}}){r_{H}}({x_{3}},{x_{4}}),\]
we have
(28)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {\left\| {h_{n}}\right\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}& \displaystyle =& \displaystyle \frac{1}{4n}{\int _{{[0,n]^{4}}}}{m_{H}}({x_{1}},{x_{2}},{x_{3}},{x_{4}})d{x_{1}}\dots d{x_{4}}\\ {} & \displaystyle =& \displaystyle \frac{1}{4n}\left({\int _{{A_{1,n}}}}+{\int _{{A_{2,n}}}}+{\int _{{A_{3,n}}}}+{\int _{{A_{4,n}}}}+{\int _{{A_{5,n}}}}\right)\\ {} & & \displaystyle \hspace{113.81102pt}\times {m_{H}}({x_{1}},{x_{2}},{x_{3}},{x_{4}})d{x_{1}}\dots d{x_{4}}\\ {} & \displaystyle =& \displaystyle \frac{1}{4n}\left(8{\int _{{D_{1,n}}}}+4{\int _{{D_{9,n}}}}+4{\int _{{D_{13,n}}}}+4{\int _{{D_{17,n}}}}+4{\int _{{D_{21,n}}}}\right)\\ {} & & \displaystyle \hspace{113.81102pt}\times {m_{H}}({x_{1}},{x_{2}},{x_{3}},{x_{4}})d{x_{1}}\dots d{x_{4}}\\ {} & \displaystyle =:& \displaystyle 2{I_{1,n}}+{I_{2,n}}+{I_{3,n}}+{I_{4,n}}+{I_{5,n}},\end{array}\]
where we used the fact that
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle {\int _{{D_{1,n}}}}{m_{H}}({x_{1}},{x_{2}},{x_{3}},{x_{4}})d{x_{1}}d{x_{2}}d{x_{3}}d{x_{4}}\\ {} & & \displaystyle \hspace{113.81102pt}=\cdots ={\int _{{D_{8,n}}}}{m_{H}}({x_{1}},{x_{2}},{x_{3}},{x_{4}})d{x_{1}}d{x_{2}}d{x_{3}}d{x_{4}},\\ {} & & \displaystyle {\int _{{D_{9,n}}}}{m_{H}}({x_{1}},{x_{2}},{x_{3}},{x_{4}})d{x_{1}}d{x_{2}}d{x_{3}}d{x_{4}}\\ {} & & \displaystyle \hspace{113.81102pt}=\cdots ={\int _{{D_{12,n}}}}{m_{H}}({x_{1}},{x_{2}},{x_{3}},{x_{4}})d{x_{1}}d{x_{2}}d{x_{3}}d{x_{4}},\\ {} & & \displaystyle {\int _{{D_{13,n}}}}{m_{H}}({x_{1}},{x_{2}},{x_{3}},{x_{4}})d{x_{1}}d{x_{2}}d{x_{3}}d{x_{4}}\\ {} & & \displaystyle \hspace{113.81102pt}=\cdots ={\int _{{D_{16,n}}}}{m_{H}}({x_{1}},{x_{2}},{x_{3}},{x_{4}})d{x_{1}}d{x_{2}}d{x_{3}}d{x_{4}},\\ {} & & \displaystyle {\int _{{D_{17,n}}}}{m_{H}}({x_{1}},{x_{2}},{x_{3}},{x_{4}})dd{x_{1}}d{x_{2}}d{x_{3}}d{x_{4}}\\ {} & & \displaystyle \hspace{113.81102pt}=\cdots ={\int _{{D_{20,n}}}}{m_{H}}({x_{1}},{x_{2}},{x_{3}},{x_{4}})d{x_{1}}d{x_{2}}d{x_{3}}d{x_{4}},\\ {} & & \displaystyle {\int _{{D_{21,n}}}}{m_{H}}({x_{1}},{x_{2}},{x_{3}},{x_{4}})d{x_{1}}d{x_{2}}d{x_{3}}d{x_{4}}\\ {} & & \displaystyle \hspace{113.81102pt}=\cdots ={\int _{{D_{24,n}}}}{m_{H}}({x_{1}},{x_{2}},{x_{3}},{x_{4}})d{x_{1}}d{x_{2}}d{x_{3}}d{x_{4}}.\end{array}\]
Let us now estimate ${I_{1,n}}$. Making the change of variables ${y_{3}}={x_{4}}-{x_{1}}$, ${y_{2}}={x_{4}}-{x_{2}}$, ${y_{1}}={x_{4}}-{x_{3}}$, and ${y_{4}}={x_{4}}$, we obtain that $\frac{1}{{H^{4H-2}}{(2H-1)^{2}}}{I_{1,n}}$ is equal to
(29)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \frac{1}{n}{\int _{0}^{n}}{\int _{0<{x_{1}}<{x_{2}}<{x_{3}}<{x_{4}}}}{e^{-\theta |{x_{1}}-{x_{3}}|}}{e^{-\theta |{x_{2}}-{x_{4}}|}}{e^{(1/H-1)({x_{1}}+{x_{2}}+{x_{3}}+{x_{4}})}}\\ {} & & \displaystyle \times \left({\left|{e^{{x_{1}}/H}}-{e^{{x_{2}}/H}}\right|^{2H-2}}-{\left|{e^{{x_{1}}/H}}+{e^{{x_{2}}/H}}\right|^{2H-2}}\right)\\ {} & & \displaystyle \hspace{28.45274pt}\times \left({\left|{e^{{x_{3}}/H}}-{e^{{x_{4}}/H}}\right|^{2H-2}}-{\left|{e^{{x_{3}}/H}}+{e^{{x_{4}}/H}}\right|^{2H-2}}\right)d{x_{1}}d{x_{2}}d{x_{3}}d{x_{4}}\\ {} & \displaystyle =& \displaystyle \frac{1}{n}{\int _{0}^{n}}{\int _{0<{y_{1}}<{y_{2}}<{y_{3}}<{y_{4}}}}F({y_{1}},{y_{2}},{y_{3}})d{y_{1}}d{y_{2}}d{y_{3}}d{y_{4}}\\ {} & \displaystyle =& \displaystyle \frac{1}{n}\left[{\int _{0}^{n}}{\int _{0<{y_{1}}<{y_{2}}<{y_{3}}<\infty }}-{\int _{0}^{n}}{\int _{{y_{4}}}^{\infty }}{\int _{0}^{{y_{3}}}}{\int _{0}^{{y_{2}}}}\right]F({y_{1}},{y_{2}},{y_{3}})d{y_{1}}d{y_{2}}d{y_{3}}d{y_{4}}\\ {} & \displaystyle =& \displaystyle {\int _{0<{y_{1}}<{y_{2}}<{y_{3}}<\infty }}F({y_{1}},{y_{2}},{y_{3}})d{y_{1}}d{y_{2}}d{y_{3}}\\ {} & & \displaystyle \hspace{56.9055pt}-\frac{1}{n}{\int _{0}^{n}}{\int _{{y_{4}}}^{\infty }}{\int _{0}^{{y_{3}}}}{\int _{0}^{{y_{2}}}}F({y_{1}},{y_{2}},{y_{3}})d{y_{1}}d{y_{2}}d{y_{3}}d{y_{4}},\end{array}\]
where the function F is given by (7). Moreover, $\frac{1}{n}{\textstyle\int _{0}^{n}}{\textstyle\int _{{y_{4}}}^{\infty }}{\textstyle\int _{0}^{{y_{3}}}}{\textstyle\int _{0}^{{y_{2}}}}F({y_{1}},{y_{2}},{y_{3}})d{y_{1}}d{y_{2}}d{y_{3}}d{y_{4}}$ is equal to
(30)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \frac{1}{n}{\int _{0}^{n}}{\int _{{y_{4}}}^{\infty }}{\int _{0}^{{y_{3}}}}{\int _{0}^{{y_{2}}}}{e^{-\theta |{y_{1}}-{y_{3}}|}}{e^{-\theta {y_{2}}}}{e^{(1-\frac{1}{H})({y_{1}}+{y_{2}}+{y_{3}})}}\\ {} & & \displaystyle \hspace{56.9055pt}\left[{\left|{e^{-\frac{{y_{2}}}{H}}}-{e^{-\frac{{y_{3}}}{H}}}\right|^{2H-2}}-{\left|{e^{-\frac{{y_{2}}}{H}}}+{e^{-\frac{{y_{3}}}{H}}}\right|^{2H-2}}\right]\\ {} & & \displaystyle \hspace{85.35826pt}\times \left[{\left|1-{e^{-\frac{{y_{1}}}{H}}}\right|^{2H-2}}-{\left|1+{e^{-\frac{{y_{1}}}{H}}}\right|^{2H-2}}\right]d{y_{1}}d{y_{2}}d{y_{3}}d{y_{4}}\\ {} & & \displaystyle =\frac{1}{n}{\int _{0}^{n}}{\int _{{y_{4}}}^{\infty }}{\int _{0}^{{y_{3}}}}{\int _{0}^{{y_{2}}}}{e^{-\theta |{y_{1}}-{y_{3}}|}}{e^{-\theta {y_{2}}}}{e^{(1-\frac{1}{H})({y_{1}}+{y_{2}}+{y_{3}})}}\\ {} & & \displaystyle \hspace{28.45274pt}\Big({\left|{e^{-\frac{{y_{2}}}{H}}}-{e^{-\frac{{y_{3}}}{H}}}\right|^{2H-2}}{\left|1-{e^{-\frac{{y_{1}}}{H}}}\right|^{2H-2}}\\ {} & & \displaystyle \hspace{45.52458pt}-{\left|{e^{-\frac{{y_{2}}}{H}}}-{e^{-\frac{{y_{3}}}{H}}}\right|^{2H-2}}{\left|1+{e^{-\frac{{y_{1}}}{H}}}\right|^{2H-2}}\\ {} & & \displaystyle \hspace{56.9055pt}-{\left|{e^{-\frac{{y_{2}}}{H}}}+{e^{-\frac{{y_{3}}}{H}}}\right|^{2H-2}}{\left|1-{e^{-\frac{{y_{1}}}{H}}}\right|^{2H-2}}\\ {} & & \displaystyle \hspace{71.13188pt}+{\left|{e^{-\frac{{y_{2}}}{H}}}+{e^{-\frac{{y_{3}}}{H}}}\right|^{2H-2}}{\left|1+{e^{-\frac{{y_{1}}}{H}}}\right|^{2H-2}}\Big)d{y_{1}}d{y_{2}}d{y_{3}}d{y_{4}}\\ {} & & \displaystyle :={A_{n}^{(1)}}-{A_{n}^{(2)}}-{A_{n}^{(3)}}+{A_{n}^{(4)}},\end{array}\]
where
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {A_{n}^{(1)}}& \displaystyle =& \displaystyle \frac{1}{n}{\int _{0}^{n}}{\int _{{y_{4}}}^{\infty }}{\int _{0}^{{y_{3}}}}{\int _{0}^{{y_{2}}}}{e^{-\theta |{y_{1}}-{y_{3}}|}}{e^{-\theta {y_{2}}}}{e^{(1-\frac{1}{H})({y_{1}}+{y_{2}}+{y_{3}})}}\\ {} & & \displaystyle \hspace{28.45274pt}\times {\left|{e^{-\frac{{y_{2}}}{H}}}-{e^{-\frac{{y_{3}}}{H}}}\right|^{2H-2}}{\left|1-{e^{-\frac{{y_{1}}}{H}}}\right|^{2H-2}}d{y_{1}}d{y_{2}}d{y_{3}}d{y_{4}}\\ {} & \displaystyle \le & \displaystyle \frac{1}{n}{\int _{0}^{n}}{\int _{{y_{4}}}^{\infty }}{\int _{0}^{{y_{3}}}}{\int _{0}^{{y_{2}}}}{e^{-\theta {y_{3}}}}{e^{(1-\frac{1}{H})({y_{1}}+{y_{2}}+{y_{3}})}}\\ {} & & \displaystyle \hspace{71.13188pt}\times {\left|{e^{-\frac{{y_{2}}}{H}}}-{e^{\frac{{y_{3}}}{H}}}\right|^{2H-2}}{\left|1-{e^{-\frac{{y_{1}}}{H}}}\right|^{2H-2}}d{y_{1}}d{y_{2}}d{y_{3}}d{y_{4}}\\ {} & \displaystyle \le & \displaystyle \frac{H\beta (1-H,2H-1)}{n}{\int _{0}^{n}}{\int _{{y_{4}}}^{\infty }}{\int _{0}^{{y_{3}}}}{e^{-\theta {y_{3}}}}{e^{(1-\frac{1}{H})({y_{2}}+{y_{3}})}}\\ {} & & \displaystyle \hspace{142.26378pt}\times {\left|{e^{-\frac{{y_{2}}}{H}}}-{e^{-\frac{{y_{3}}}{H}}}\right|^{2H-2}}d{y_{2}}d{y_{3}}d{y_{4}}\\ {} & \displaystyle =& \displaystyle \frac{H\beta (1-H,2H-1)}{n}{\int _{0}^{n}}{\int _{{y_{4}}}^{\infty }}{\int _{0}^{{y_{3}}}}{e^{-\theta {y_{3}}}}{e^{(1-\frac{1}{H})({y_{3}}-{y_{2}})}}\\ {} & & \displaystyle \hspace{136.5733pt}\times {\left|1-{e^{-({y_{3}}-{y_{2}})/H}}\right|^{2H-2}}d{y_{2}}d{y_{3}}d{y_{4}}\\ {} & \displaystyle =& \displaystyle \frac{H\beta (1-H,2H-1)}{n}{\int _{0}^{n}}{\int _{{y_{4}}}^{\infty }}{\int _{0}^{{y_{3}}}}{e^{-\theta {y_{3}}}}{e^{(1-\frac{1}{H}){x_{2}}}}\\ {} & & \displaystyle \hspace{142.26378pt}\times {\left|1-{e^{-\frac{{x_{2}}}{H}}}\right|^{2H-2}}d{x_{2}}d{y_{3}}d{y_{4}}\\ {} & \displaystyle \le & \displaystyle \frac{{\left(H\beta (1-H,2H-1)\right)^{2}}}{n}{\int _{0}^{n}}{\int _{{y_{4}}}^{\infty }}{e^{-\theta {y_{3}}}}d{y_{3}}d{y_{4}}\\ {} & \displaystyle \le & \displaystyle \frac{{\left(H\beta (1-H,2H-1)\right)^{2}}}{{\theta ^{2}}n}.\end{array}\]
Since
\[ {\Big|{e^{-\frac{{y_{2}}}{H}}}+{e^{-\frac{{y_{3}}}{H}}}\Big|^{2H-2}}\le {\Big|{e^{-\frac{{y_{2}}}{H}}}-{e^{-\frac{{y_{3}}}{H}}}\Big|^{2H-2}}\hspace{1em}\text{and}\hspace{1em}{\Big|1+{e^{-\frac{{y_{1}}}{H}}}\Big|^{2H-2}}\le {\Big|1-{e^{-\frac{{y_{1}}}{H}}}\Big|^{2H-2}},\]
we have
\[ |{A_{n}^{(2)}}|\le |{A_{n}^{(1)}}|\le \frac{C}{n},\hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}|{A_{n}^{(3)}}|\le |{A_{n}^{(1)}}|\le \frac{C}{n}\hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}\text{and}\hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}|{A_{n}^{(4)}}|\le |{A_{n}^{(1)}}|\le \frac{C}{n}.\]
Consequently,
(31)
\[ \frac{1}{n}{\int _{0}^{n}}{\int _{{y_{4}}}^{\infty }}{\int _{0}^{{y_{3}}}}{\int _{0}^{{y_{2}}}}F({y_{1}},{y_{2}},{y_{3}})d{y_{1}}d{y_{2}}d{y_{3}}d{y_{4}}\le \frac{C}{n}.\]
Combining (29) and (31) we deduce
(32)
\[ \left|{I_{1,n}}-{H^{4H-2}}{(2H-1)^{2}}{\int _{0<{y_{1}}<{y_{2}}<{y_{3}}<\infty }}F({y_{1}},{y_{2}},{y_{3}})\right|d{y_{1}}d{y_{2}}d{y_{3}}\le \frac{C}{n}.\hspace{2.5pt}\]
Moreover,
(33)
\[ \left|{I_{1,n}}-{H^{4H-2}}{(2H-1)^{2}}{\int _{0<{y_{1}}<{y_{3}}<{y_{2}}<\infty }}F({y_{1}},{y_{2}},{y_{3}})d{y_{1}}d{y_{2}}d{y_{3}}\right|\le \frac{C}{n},\hspace{2.5pt}\]
since
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle {\int _{0<{y_{1}}<{y_{3}}<{y_{2}}<\infty }}F({y_{1}},{y_{2}},{y_{3}})d{y_{1}}d{y_{3}}d{y_{2}}\\ {} & & \displaystyle \hspace{113.81102pt}={\int _{0<{y_{1}}<{y_{2}}<{y_{3}}<\infty }}F({y_{1}},{y_{2}},{y_{3}})d{y_{1}}d{y_{2}}d{y_{3}}.\end{array}\]
Using similar arguments as above, we can conclude
(34)
\[ \left|{I_{2,n}}-{H^{4H-2}}{(2H-1)^{2}}{\int _{0<{y_{2}}<{y_{1}}<{y_{3}}<\infty }}F({y_{1}},{y_{2}},{y_{3}})d{y_{2}}d{y_{1}}d{y_{3}}\right|\le \frac{C}{n},\hspace{2.5pt}\]
(35)
\[ \left|{I_{3,n}}-{H^{4H-2}}{(2H-1)^{2}}{\int _{0<{y_{2}}<{y_{3}}<{y_{1}}<\infty }}F({y_{1}},{y_{2}},{y_{3}})d{y_{2}}d{y_{3}}d{y_{1}}\right|\le \frac{C}{n},\hspace{2.5pt}\]
(36)
\[ \left|{I_{4,n}}-{H^{4H-2}}{(2H-1)^{2}}{\int _{0<{y_{3}}<{y_{1}}<{y_{2}}<\infty }}F({y_{1}},{y_{2}},{y_{3}})d{y_{3}}d{y_{1}}d{y_{2}}\right|\le \frac{C}{n},\hspace{2.5pt}\]
(37)
\[ \left|{I_{5,n}}-{H^{4H-2}}{(2H-1)^{2}}{\int _{0<{y_{3}}<{y_{2}}<{y_{1}}<\infty }}F({y_{1}},{y_{2}},{y_{3}})d{y_{3}}d{y_{2}}d{y_{1}}\right|\le \frac{C}{n}.\hspace{2.5pt}\]
Combining (28), (32)–(37) and the fact that
\[ {(0,\infty )^{3}}=\bigcup \limits_{\sigma \in \mathfrak{S}}\{0<{y_{\sigma (1)}}<{y_{\sigma (2)}}<{y_{\sigma (3)}}<\infty \},\]
where $\mathfrak{S}$ is a set of permutations on a set $\{1,2,3\}$, we deduce that
(38)
\[ \left|{\left\| {h_{n}}\right\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}-{H^{4H-2}}{(2H-1)^{2}}{\int _{{(0,\infty )^{3}}}}F({y_{1}},{y_{2}},{y_{3}})d{y_{1}}d{y_{2}}d{y_{3}}\right|\le \frac{C}{n},\]
which proves (23).  □
Lemma 3.
Suppose $H\in (\frac{1}{2},1)$. Let ${g_{n}}$ and ${f_{n}}$ be the functions given by (19) and (21), respectively. Then, for all $n\ge 1$,
(39)
\[ \| {f_{n}}{\otimes _{1}}{f_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}}\le \frac{C}{\sqrt{n}},\]
(40)
\[ \| {g_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}}\le \frac{C}{\sqrt{n}},\]
(41)
\[ \| {g_{n}}{\otimes _{1}}{g_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}}\le \frac{C}{{n^{3/2}}},\]
(42)
\[ \| {f_{n}}{\otimes _{1}}{g_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}}\le \frac{C}{n},\]
(43)
\[ \left|{\langle {f_{n}},{g_{n}}\rangle _{{\mathfrak{H}^{\otimes 2}}}}\right|\le \frac{C}{\sqrt{n}}.\]
Proof.
Taking into account that
\[ 8\| {f_{n}}{\otimes _{1}}{f_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}=Var\left(\frac{1}{2}\| D{F_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}\right),\hspace{28.45274pt}\text{for}\hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}{F_{n}}:={I_{2}}({f_{n}}),\]
in order to obtain (39), it is sufficient to show that
(44)
\[ Var\left(\| D{F_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}\right)\le \frac{C}{n}.\]
Now using (9), we can write
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle \| D{F_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}& \displaystyle =& \displaystyle 4{\int _{0}^{n}}{\int _{0}^{n}}{I_{1}}({f_{n}}(u,.)){I_{1}}({f_{n}}(v,.)){r_{H}}(u,v)dudv\end{array}\]
Using the multiplicative formula (12), we see that
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {I_{1}}({f_{n}}(u,.)){I_{1}}({f_{n}}(v,.))& \displaystyle =& \displaystyle {\langle {f_{n}}(u,.),{f_{n}}(v,.)\rangle _{{\mathfrak{H}^{\otimes 2}}}}+{I_{2}}\Big({f_{n}}(u,.)\tilde{\otimes }{f_{n}}(v,.)\Big)\\ {} & \displaystyle =:& \displaystyle {A_{1}}(u,v)+{A_{2}}(u,v).\end{array}\]
Here ${A_{1}}$ is deterministic and ${A_{2}}$ has expectation zero. Thus, we obtain that
\[ \| D{F_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}-E\Big(\| D{F_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}\Big)=4{\int _{0}^{n}}{\int _{0}^{n}}{A_{2}}(u,v){r_{H}}(u,v)dudv\]
Hence, in order to have (44), we need to show that
\[ E\left[{\left({\int _{0}^{n}}{\int _{0}^{n}}{A_{2}}(u,v){r_{H}}(u,v)dudv\right)^{2}}\right]\le \frac{C}{n}.\]
We have
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle E\left[{\left({\int _{0}^{n}}{\int _{0}^{n}}{A_{2}}(u,v){r_{H}}(u,v)dudv\right)^{2}}\right]\\ {} & & \displaystyle \hspace{2.5pt}\hspace{2.5pt}={\int _{{[0,n]^{4}}}}E\left[{A_{2}}({u_{1}},{v_{1}}){A_{2}}({u_{2}},{v_{2}})\right]{r_{H}}({u_{1}},{v_{1}}){r_{H}}({u_{2}},{v_{2}})d{u_{1}}d{v_{1}}d{u_{2}}d{v_{2}}\\ {} & & \displaystyle \hspace{2.5pt}\hspace{2.5pt}={\int _{{[0,n]^{4}}}}\Big({\int _{{[0,n]^{4}}}}\left({f_{n}}({u_{1}},.)\tilde{\otimes }{f_{n}}({v_{1}},.)({x_{1}},{y_{1}})\right)\\ {} & & \displaystyle \hspace{25.6073pt}\times \left({f_{n}}({u_{2}},.)\tilde{\otimes }{f_{n}}({v_{2}},.)\right)({x_{2}},{y_{2}}){r_{H}}({x_{1}},{y_{1}}){r_{H}}({x_{2}},{y_{2}})d{x_{1}}d{y_{1}}d{x_{2}}d{y_{2}}\Big)\\ {} & & \displaystyle \hspace{142.26378pt}\times {r_{H}}({u_{1}},{v_{1}}){r_{H}}({u_{2}},{v_{2}})d{u_{1}}d{v_{1}}d{u_{2}}d{v_{2}}\\ {} & & \displaystyle \hspace{2.5pt}\hspace{2.5pt}={\int _{{[0,n]^{8}}}}\left({f_{n}}({u_{1}},.)\tilde{\otimes }{f_{n}}({v_{1}},.)({x_{1}},{y_{1}})\right)\left({f_{n}}({u_{2}},.)\tilde{\otimes }{f_{n}}({v_{2}},.)\right)({x_{2}},{y_{2}})\\ {} & & \displaystyle \hspace{56.9055pt}\times {r_{H}}({x_{1}},{y_{1}}){r_{H}}({x_{2}},{y_{2}}){r_{H}}({u_{1}},{v_{1}})\\ {} & & \displaystyle \hspace{113.81102pt}\times {r_{H}}({u_{2}},{v_{2}})d{x_{1}}d{y_{1}}d{x_{2}}d{y_{2}}d{u_{1}}d{v_{1}}d{u_{2}}d{v_{2}}.\end{array}\]
Note that for every $0\le x$, $y\le T$
\[ {r_{H}}(x,y)\le {H^{2H-1}}(2H-1){e^{(\frac{1}{H}-1)(x+y)}}{\left|{e^{\frac{x}{H}}}-{e^{\frac{y}{H}}}\right|^{2H-2}}:=K(x,y).\]
Thus,
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle E\left[{\left({\int _{0}^{n}}{\int _{0}^{n}}{A_{2}}(u,v){r_{H}}(u,v)dudv\right)^{2}}\right]\\ {} & & \displaystyle \hspace{5.69046pt}\le {\int _{{[0,n]^{8}}}}\left({f_{n}}({u_{1}},.)\tilde{\otimes }{f_{n}}({v_{1}},.)({x_{1}},{y_{1}})\right)\left({f_{n}}({u_{2}},.)\tilde{\otimes }{f_{n}}({v_{2}},.)\right)({x_{2}},{y_{2}})\\ {} & & \displaystyle \hspace{19.91684pt}\times K({x_{1}},{y_{1}})K({x_{2}},{y_{2}})K({u_{1}},{v_{1}})K({u_{2}},{v_{2}})d{x_{1}}d{y_{1}}d{x_{2}}d{y_{2}}d{u_{1}}d{v_{1}}d{u_{2}}d{v_{2}}\\ {} & & \displaystyle \hspace{5.69046pt}\le \frac{C}{n},\end{array}\]
where the last inequality comes from [3, Lemma 5.1]. Hence the inequality (39) is obtained.
Since for every $(u,v)\in {[0,n]^{2}}$, ${g_{n}}(u,v)\ge 0$, ${h_{n}}(u,v)\ge 0$ and ${l_{n}}(u,v)\ge 0$, using (19), we get
\[ \| {g_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}}\le \frac{1}{\theta {\rho _{\theta ,H}}\sqrt{n}}\| {h_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}}.\]
Combining this with (38), we obtain (40). Similarly, using (19), (21) and (39), we have
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle \| {g_{n}}{\otimes _{1}}{g_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}& \displaystyle \le & \displaystyle \frac{C}{{n^{2}}}\| {h_{n}}{\otimes _{1}}{h_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}\\ {} & \displaystyle \le & \displaystyle \frac{C}{{n^{2}}}\| {f_{n}}{\otimes _{1}}{f_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}\\ {} & \displaystyle \le & \displaystyle \frac{C}{{n^{3}}},\end{array}\]
which implies (41).
It is well known that
\[ \| {f_{n}}{\otimes _{1}}{g_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}={\langle {f_{n}}{\otimes _{1}}{f_{n}},{g_{n}}{\otimes _{1}}{g_{n}}\rangle _{{\mathfrak{H}^{\otimes 2}}}},\]
due to a straightforward application of the definition of contractions and the Fubini theorem.
Thus, from (39) and (41), we obtain
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle \| {f_{n}}{\otimes _{1}}{g_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}& \displaystyle \le & \displaystyle \| {f_{n}}{\otimes _{1}}{f_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}}\| {g_{n}}{\otimes _{1}}{g_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}}\\ {} & \displaystyle \le & \displaystyle \frac{C}{{n^{3}}},\end{array}\]
which leads to (42).
Finally, the inequality (43) is a direct consequence of (23) and (40). The proof of the lemma is thus complete.  □
Proof of Theorem 1.
First we prove the almost sure convergence (4). From (20) we can write
\[ \theta -{\hat{\theta }_{n}}=\frac{\frac{{\sigma _{\theta ,H}}}{\sqrt{n}}{I_{2}}({f_{n}})}{{I_{2}}({g_{n}})+{b_{n}}}.\]
Furthermore, using (23), and (40), we have
\[ E\left[{\left(\frac{1}{\sqrt{n}}{I_{2}}({f_{n}})\right)^{2}}\right]=\frac{2}{n}\| {f_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}\le \frac{C}{n},\hspace{2.5pt}\text{and}\hspace{2.5pt}\hspace{1em}E\left[{\left({I_{2}}({g_{n}})\right)^{2}}\right]=2\| {g_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}\le \frac{C}{n}.\]
Combining this with (13) and Lemma 1, we obtain that, as $n\to \infty $,
\[ \frac{1}{\sqrt{n}}{I_{2}}({f_{n}})\longrightarrow 0,\hspace{2.5pt}\text{and}\hspace{2.5pt}\hspace{1em}{I_{2}}({g_{n}})\longrightarrow 0\]
almost surely. Moreover, it follows from (22) that ${b_{n}}\longrightarrow 0$, as $n\to \infty $. Therefore (4) is obtained.
Let us now prove the convergence in law (5). It follows from (20), Proposition 1, Lemma 2 and Lemma 3 that for every n large,
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \underset{z\in \mathbb{R}}{\sup }\left|P\left(\frac{\sqrt{n}}{{\sigma _{\theta ,H}}}\left(\theta -{\hat{\theta }_{n}}\right)\le z\right)-P\left(Z\le z\right)\right|\\ {} & & \displaystyle \hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}\le C\times \max \Big\{\left|{b_{n}^{2}}-2\| {f_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}\right|,\hspace{2.5pt}\| {f_{n}}{\otimes _{1}}{f_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}},\hspace{2.5pt}\left|{\langle {f_{n}},{g_{n}}\rangle _{{\mathfrak{H}^{\otimes 2}}}}\right|,\\ {} & & \displaystyle \hspace{113.81102pt}\| {f_{n}}{\otimes _{1}}{g_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{\frac{1}{2}}},\hspace{2.5pt}\| {g_{n}}{\otimes _{1}}{g_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}},\hspace{2.5pt}\| {g_{n}}{\| _{{\mathfrak{H}^{\otimes 2}}}^{2}}\Big\}\\ {} & & \displaystyle \hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}\hspace{2.5pt}\le \frac{C}{\sqrt{n}},\end{array}\]
which implies the desired conclusion.  □

Acknowledgments

We thank the two anonymous reviewers for their very careful reading and suggestions, which have led to significant improvements in the presentation of our results.

References

[1] 
Alazemi, F., Alsenafi, A., Es-Sebaiy, K.: Parameter estimation for Gaussian mean-reverting Ornstein-Uhlenbeck processes of the second kind: non-ergodic case. Stoch. Dyn. 19(5), 2050011 (25 pages) (2020). MR4080159. https://doi.org/10.1142/S0219493720500112
[2] 
Azmoodeh, E., Morlanes, G.I.: Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the second kind. Statistics 49(1), 1–18 (2013). MR3304364. https://doi.org/10.1080/02331888.2013.863888
[3] 
Azmoodeh, E., Viitasaari, L.: Parameter estimation based on discrete observations of fractional Ornstein-Uhlenbeck process of the second kind. Stat. Inference Stoch. Process. 18(3), 205–227 (2015). MR3395605. https://doi.org/10.1007/s11203-014-9111-8
[4] 
Balde, M.F., Belfadli, R., Es-Sebaiy, K.: Berry-Esséen bound for drift estimation of fractional Ornstein-Uhlenbeck process of second kind (2020). preprint. arXiv:2005.08397. MR4128741. https://doi.org/10.1142/S0219493720500239
[5] 
Bajja, S., Es-Sebaiy, K., Viitasaari, L.: Least squares estimator of fractional Ornstein-Uhlenbeck processes with periodic mean. J. Korean Stat. Soc. 46(4), 608–622 (2017). MR3718150. https://doi.org/10.1016/j.jkss.2017.06.002
[6] 
Chronopoulou, A., Viens, F.: Stochastic volatility and option pricing with long-memory in discrete and continuous time. Quant. Finance 12, 635–649 (2012). MR2909603. https://doi.org/10.1080/14697688.2012.664939
[7] 
Comte, F., Coutin, L., Renault, E.: Affine fractional stochastic volatility models. Ann. Finance 8, 337–378 (2012). MR2922801. https://doi.org/10.1007/s10436-010-0165-3
[8] 
Chen, Y., Kuang, N., Li, Y.: Berry-Esséeen bound for the parameter estimation of fractional Ornstein-Uhlenbeck processes. Stoch. Dyn. 20(1), 2050023 (2019). MR4128741. https://doi.org/10.1142/S0219493720500239
[9] 
Chen, Y., Li, Y.: Berry-Esséen bound for the parameter estimation of fractional Ornstein-Uhlenbeck processes with the hurst parameter $H\in (0,\frac{1}{2})$. Commun. Stat., Theory Methods, 1–18 (2019). https://doi.org/10.1080/03610926.2019.1704007
[10] 
Douissi, S., Es-Sebaiy, K., Viens, F.: Berry-Esséen bounds for parameter estimation of general Gaussian processes. ALEA Lat. Am. J. Probab. Math. Stat. 16, 633–664 (2019). MR3949273. https://doi.org/10.30757/alea.v16-23
[11] 
El Machkouri, M., Es-Sebaiy, K., Ouknine, Y.: Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes. J. Korean Stat. Soc. 45(3), 329–341 (2016). MR3527650. https://doi.org/10.1016/j.jkss.2015.12.001
[12] 
El Onsy, B., Es-Sebaiy, K., Viens, F.: Parameter estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise. Stochastics 89(2), 431–468 (2017). MR3590429. https://doi.org/10.1080/17442508.2016.1248967
[13] 
Hu, Y., Nualart, D.: Parameter estimation for fractional Ornstein Uhlenbeck processes. Stat. Probab. Lett. 80(11–12), 1030–1038 (2010). MR2638974. https://doi.org/10.1016/j.spl.2010.02.018
[14] 
Kloeden, P., Neuenkirch, A.: The pathwise convergence of approximation schemes for stochastic differential equations. LMS J. Comput. Math. 10, 235–253 (2007). MR2320830. https://doi.org/10.1112/S1461157000001388
[15] 
Kaarakka, T., Salminen, P.: On Fractional Ornstein-Uhlenbeck process. Commun. Stoch. Anal. 5, 121–133 (2011). MR2808539. https://doi.org/10.31390/cosa.5.1.08
[16] 
Kim, Y.T., Park, H.S.: Optimal Berry-Esseen bound for statistical estimations and its application to SPDE. J. Multivar. Anal. 155, 284–304 (2017). MR3607896. https://doi.org/10.1016/j.jmva.2017.01.006
[17] 
Kleptsyna, M., Le Breton, A.: Statistical analysis of the fractional Ornstein-Uhlenbeck type process. In: Statistical Inference for Stochastic Processes, vol. 5, pp. 229–241 (2002). MR1943832. https://doi.org/10.1023/A:1021220818545
[18] 
Nourdin, I., Peccati, G.: Normal Approximations with Malliavin calculus: From Stein’s method to Universality. Cambridge University Press, (2012). MR2962301. https://doi.org/10.1017/CBO9781139084659
[19] 
Nualart, D.: The Malliavin calculus and related topics, 2nd edn. Springer, Berlin (2006). MR2200233
[20] 
Prakasa Rao, B.L.S.: Berry-Esseen type bound for fractional Ornstein-Uhlenbeck type process driven by sub-fractional Brownian motion. Theory Stoch. Process. 23(39), Issue 1, 82–92 (2018). MR3948508
[21] 
Tudor, C.: On the Wiener integral with respect to a sub-fractional Brownian motion on an interval. J. Math. Anal. Appl. 351, 456–468 (2009). MR2472957. https://doi.org/10.1016/j.jmaa.2008.10.041
Reading mode PDF XML

Table of contents
  • 1 Introduction
  • 2 Preliminaries
  • 3 Proof of Theorem 1
  • Acknowledgments
  • References

Copyright
© 2021 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Sub-fractional Ornstein–Uhlenbeck process of second kind least squares estimator Berry–Esséen bound Malliavin–Stein approach for normal approximations

MSC2010
60G15 60G22 62F12 62M09 60H07

Funding
M. F. Baldé acknowledges support from NLAGA project of SIMONS foundation.

Metrics
since March 2018
621

Article info
views

570

Full article
views

392

PDF
downloads

138

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

  • Theorems
    1
Theorem 1.
Theorem 1.
Assume $H\in (\frac{1}{2},1)$ and let ${\hat{\theta }_{n}}$ be given by (3). Then, as $n\to \infty $,
(4)
\[ {\hat{\theta }_{n}}\longrightarrow \theta \hspace{1em}\textit{almost surely.}\]
Moreover, there exists a constant $0<C<\infty $, depending only on θ and H, such that for all sufficiently large positive n,
(5)
\[ \underset{z\in \mathbb{R}}{\sup }\left|P\left(\frac{\sqrt{n}}{{\sigma _{\theta ,H}}}\left(\theta -{\hat{\theta }_{n}}\right)\le z\right)-P\left(Z\le z\right)\right|\le \frac{C}{\sqrt{n}},\]
where Z denotes a standard normal random variable, and the positive constant ${\sigma _{\theta ,H}}$ is given by
(6)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {\sigma _{\theta ,H}}& \displaystyle :=& \displaystyle \frac{\theta \sqrt{2{\textstyle\int _{{(0,\infty )^{3}}}}F({y_{1}},{y_{2}},{y_{3}})d{y_{1}}d{y_{2}}d{y_{3}}}}{H\left[\beta (H\theta +1-H,2H-1)-k(\theta ,H)\right]}<\infty ,\end{array}\]
with β denoting the classical Beta function, ${\sigma _{\theta ,H}}<\infty $ (due to [3] and $0\le |x-y{|^{2H-2}}-|x+y{|^{2H-2}}\le |x-y{|^{2H-2}}$ for very $x,y\ge 0$), whereas the function F is defined by
(7)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle F({y_{1}},{y_{2}},{y_{3}})\\ {} & & \displaystyle :={e^{-\theta |{y_{1}}-{y_{3}}|}}{e^{-\theta {y_{2}}}}{e^{(1-\frac{1}{H})({y_{1}}+{y_{2}}+{y_{3}})}}\left({\left|1-{e^{-\frac{{y_{1}}}{H}}}\right|^{2H-2}}-{\left|1+{e^{-\frac{{y_{1}}}{H}}}\right|^{2H-2}}\right)\\ {} & & \displaystyle \hspace{42.67912pt}\times \left({\left|{e^{-\frac{{y_{2}}}{H}}}-{e^{-\frac{{y_{3}}}{H}}}\right|^{2H-2}}-{\left|{e^{-\frac{{y_{2}}}{H}}}+{e^{-\frac{{y_{3}}}{H}}}\right|^{2H-2}}\right).\hspace{2.5pt}\end{array}\]

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy