In a continuous time nonlinear regression model the residual correlogram is considered as an estimator of the stationary Gaussian random noise covariance function. For this estimator the functional central limit theorem is proved in the space of continuous functions. The result obtained shows that the limiting sample continuous Gaussian random process coincides with the limiting process in the central limit theorem for standard correlogram of the random noise in the specified regression model.
We consider continuous-time Markov chains on integers which allow transitions to adjacent states only, with alternating rates. This kind of processes are useful in the study of chain molecular diffusions. We give explicit formulas for probability generating functions, and also for means, variances and state probabilities of the random variables of the process. Moreover we study independent random time-changes with the inverse of the stable subordinator, the stable subordinator and the tempered stable subordinator. We also present some asymptotic results in the fashion of large deviations. These results give some generalizations of those presented in [Journal of Statistical Physics 154 (2014), 1352–1364].
We consider a mixture with varying concentrations in which each component is described by a nonlinear regression model. A modified least squares estimator is used to estimate the regressions parameters. Asymptotic normality of the derived estimators is demonstrated. This result is applied to confidence sets construction. Performance of the confidence sets is assessed by simulations.
Explicit solutions for a class of linear backward stochastic differential equations (BSDE) driven by Gaussian Volterra processes are given. These processes include the multifractional Brownian motion and the multifractional Ornstein-Uhlenbeck process. By an Itô formula, proven in the context of Malliavin calculus, the BSDE is associated to a linear second order partial differential equation with terminal condition whose solution is given by a Feynman-Kac type formula.
In this article, the compound Poisson process of order k (CPPoK) is introduced and its properties are discussed. Further, using mixture of tempered stable subordinators (MTSS) and its right continuous inverse, the two subordinated CPPoK with various distributional properties are studied. It is also shown that the space and tempered space fractional versions of CPPoK and PPoK can be obtained, which generalize the process defined in [Statist. Probab. Lett. 82 (2012), 852–858].
In this paper we study the existence of an optimal hedging strategy for the shortfall risk measure in the game options setup. We consider the continuous time Black–Scholes (BS) model. Our first result says that in the case where the game contingent claim (GCC) can be exercised only on a finite set of times, there exists an optimal strategy. Our second and main result is an example which demonstrates that for the case where the GCC can be stopped on the whole time interval, optimal portfolio strategies need not always exist.
We present a model of a continuous-time Markov branching process with the infinitesimal generating function defined by the geometric probability distribution. It is proved that the solution of the backward Kolmogorov equation is expressed by the composition of special functions – Wright function in the subcritical case and Lambert-W function in the critical case. We found the explicit form of conditional limit distribution in the subcritical branching reproduction. In the critical case, the extinction probability and probability mass function are expressed as a series containing Bell polynomial, Stirling numbers, and Lah numbers.
The paper deals with a stochastic heat equation driven by an additive fractional Brownian space-only noise. We prove that a solution to this equation is a stationary and ergodic Gaussian process. These results enable us to construct a strongly consistent estimator of the diffusion parameter.
Sufficient conditions are presented on the offspring and immigration distributions of a second-order Galton–Watson process ${({X_{n}})_{n\geqslant -1}}$ with immigration, under which the distribution of the initial values $({X_{0}},{X_{-1}})$ can be uniquely chosen such that the process becomes strongly stationary and the common distribution of ${X_{n}}$, $n\geqslant -1$, is regularly varying.
Under suitable conditions, the integro-differential equations for the density of ${I_{t}}$ and ${I_{\infty }}$ are derived. Sufficient conditions are derived for the existence of a smooth density of the laws of these functionals with respect to the Lebesgue measure. In the particular case of Lévy processes these equations can be simplified and, in a number of cases, solved explicitly.