Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 7, Issue 4 (2020)
  4. Linear backward stochastic differential ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Linear backward stochastic differential equations with Gaussian Volterra processes
Volume 7, Issue 4 (2020), pp. 415–433
Habiba Knani   Marco Dozzi  

Authors

 
Placeholder
https://doi.org/10.15559/20-VMSTA166
Pub. online: 3 December 2020      Type: Research Article      Open accessOpen Access

Received
9 April 2020
Revised
8 September 2020
Accepted
1 November 2020
Published
3 December 2020

Abstract

Explicit solutions for a class of linear backward stochastic differential equations (BSDE) driven by Gaussian Volterra processes are given. These processes include the multifractional Brownian motion and the multifractional Ornstein-Uhlenbeck process. By an Itô formula, proven in the context of Malliavin calculus, the BSDE is associated to a linear second order partial differential equation with terminal condition whose solution is given by a Feynman-Kac type formula.

References

[1] 
Alòs, E., Nualart, D.: Stochastic integration with respect to the fractional brownian motion. Stochastics 75, 129–152 (2003). MR1978896. https://doi.org/10.1080/1045112031000078917
[2] 
Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gausssian processes. Ann. Probab. 29, 766–801 (2001). MR1849177. https://doi.org/10.1214/aop/1008956692
[3] 
Bamba Sow, A., Kor Diouf, B.: Fractional anticipated BSDEs with stochastic Lipschitz coefficients. Random Oper. Stoch. Equ. 26(3), 143–161 (2018). MR3849701. https://doi.org/10.1515/rose-2018-0012
[4] 
Bender, C.: Explicit solutions of a class of linear fractional BSDEs. Syst. Control Lett. 54, 671–680 (2005). MR2142362. https://doi.org/10.1016/j.sysconle.2004.11.006
[5] 
Bender, C.: Backward SDE’s driven by gaussian processes. Stoch. Process. Appl. 124, 2892–2916 (2014). MR3217428. https://doi.org/10.1016/j.spa.2014.03.013
[6] 
Bender, C., Viitasaari, L.: A general non-existence result for linear BSDEs driven by a Gaussian process. Stoch. Process. Appl. 127, 1204–1233 (2017). MR3619268. https://doi.org/10.1016/j.spa.2016.07.012
[7] 
Boufoussi, B., Dozzi, M., Marty, R.: Local time and Tanaka formula for a Volterra-type multifractional Gaussian process. Bernoulli 16, 1294–1311 (2010). MR2759180. https://doi.org/10.3150/10-BEJ261
[8] 
Carmona, R.: Lectures on BSDEs, Stochastic Control and Stochastic Differential Games with Financial Applications. SIAM (2016). MR3629171. https://doi.org/10.1137/1.9781611974249
[9] 
Crépey, S.: Financial Modeling, a Backward Stochastic Differential Equations Perspective. Springer (2013). MR3154654. https://doi.org/10.1007/978-3-642-37113-4
[10] 
Diehl, J., Friz, P.: Backward stochastic differential equations with rough drivers. Ann. Probab. 40, 1715–1758 (2012). MR2978136. https://doi.org/10.1214/11-AOP660
[11] 
Hu, Y., Peng, S.: Backward stochastic differential equation driven by fractional brownian motion. SIAM J. Control Optim. 48, 1675–1700 (2009). MR2516183. https://doi.org/10.1137/070709451
[12] 
Hu, Y., Ocone, D., Song, J.: Some results on backward stochastic differential equations driven by fractional brownian motion. Stochastic Analysis and Applications to Finance, Intediscip. Math. Sci 13, 225–242 (2012). MR2986849. https://doi.org/10.1142/9789814383585_0012
[13] 
Jańczak-Borkowska, K.: Generalized BSDEs driven by fractional brownian motion. Stat. Probab. Lett. 83, 805–811 (2013). MR3040307. https://doi.org/10.1016/j.spl.2012.11.029
[14] 
Maticiuc, L., Nie, T.: Fractional backward stochastic differential equations and fractional backward variational inequalities. J. Theor. Probab. 28, 337–395 (2015). MR3320972. https://doi.org/10.1007/s10959-013-0509-9
[15] 
Nualart, D.: The Malliavin Calculus and Related Topics. 2nd edn. Springer (2006). MR2200233
[16] 
Pardoux, E., Peng, S.G.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14, 55–61 (1990). MR1037747. https://doi.org/10.1016/0167-6911(90)90082-6
[17] 
Pardoux, E., Răşcanu, A.: Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Springer (2014). MR3308895. https://doi.org/10.1007/978-3-319-05714-9
[18] 
Pham, H.: Continous-time Stochastic Control and Optimization with Financial Applications. Springer (2009). MR2533355. https://doi.org/10.1007/978-3-540-89500-8
[19] 
Sottinen, T., Viitasaari, L.: Stochastic analysis of gaussian processes via fredholm representation. Int. J. Stoch. Anal. (2016). MR3536393. https://doi.org/10.1155/2016/8694365
[20] 
Touzi, N.: Optimal Stochastic Control, Stochastic Target Problems and Backward SDE. Springer (2012). MR2976505. https://doi.org/10.1007/978-1-4614-4286-8
[21] 
Čoupek, P., Maslowski, B.: Stochastic evolution equations with Volterra noise. Stoch. Process. Appl. 127, 877–900 (2017). MR3605714. https://doi.org/10.1016/j.spa.2016.07.003
[22] 
Wen, J., Shi, Y.: Anticipative backward stochastic differential equations driven by fractional brownian motion. Stat. Probab. Lett. 122, 118–127 (2017). MR3584147. https://doi.org/10.1016/j.spl.2016.11.011
[23] 
Zhang, H.: Properties of solution of fractional backward stochastic differential equation. Appl. Math. Comput. 228, 446–453 (2014). MR3151931. https://doi.org/10.1016/j.amc.2013.11.081
[24] 
Zhang, J.: Backward Stochastic Differential Equations, Probability Theory and Stochastic Modelling. Springer (2017). MR3699487. https://doi.org/10.1007/978-1-4939-7256-2

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2020 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Backward stochastic differential equation Itô formula Malliavin calculus partial differential equation Gaussian Volterra process

MSC2010
35K10 60G22 60H05 60H07 60H10

Funding
The authors acknowledge the financial support by the program Hubert Curien Utique No. 17G1505 of the French Ministry of Foreign Affairs and the Tunisian Ministry of Education and Research.

Metrics
since March 2018
663

Article info
views

617

Full article
views

689

PDF
downloads

133

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy