Linear backward stochastic differential equations with Gaussian Volterra processes        
        
    
        Volume 7, Issue 4 (2020), pp. 415–433
            
    
                    Pub. online: 3 December 2020
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
9 April 2020
                                    9 April 2020
                Revised
8 September 2020
                                    8 September 2020
                Accepted
1 November 2020
                                    1 November 2020
                Published
3 December 2020
                    3 December 2020
Abstract
Explicit solutions for a class of linear backward stochastic differential equations (BSDE) driven by Gaussian Volterra processes are given. These processes include the multifractional Brownian motion and the multifractional Ornstein-Uhlenbeck process. By an Itô formula, proven in the context of Malliavin calculus, the BSDE is associated to a linear second order partial differential equation with terminal condition whose solution is given by a Feynman-Kac type formula.
            References
 Alòs, E., Nualart, D.: Stochastic integration with respect to the fractional brownian motion. Stochastics 75, 129–152 (2003). MR1978896. https://doi.org/10.1080/1045112031000078917
 Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gausssian processes. Ann. Probab. 29, 766–801 (2001). MR1849177. https://doi.org/10.1214/aop/1008956692
 Bamba Sow, A., Kor Diouf, B.: Fractional anticipated BSDEs with stochastic Lipschitz coefficients. Random Oper. Stoch. Equ. 26(3), 143–161 (2018). MR3849701. https://doi.org/10.1515/rose-2018-0012
 Bender, C.: Explicit solutions of a class of linear fractional BSDEs. Syst. Control Lett. 54, 671–680 (2005). MR2142362. https://doi.org/10.1016/j.sysconle.2004.11.006
 Bender, C.: Backward SDE’s driven by gaussian processes. Stoch. Process. Appl. 124, 2892–2916 (2014). MR3217428. https://doi.org/10.1016/j.spa.2014.03.013
 Bender, C., Viitasaari, L.: A general non-existence result for linear BSDEs driven by a Gaussian process. Stoch. Process. Appl. 127, 1204–1233 (2017). MR3619268. https://doi.org/10.1016/j.spa.2016.07.012
 Boufoussi, B., Dozzi, M., Marty, R.: Local time and Tanaka formula for a Volterra-type multifractional Gaussian process. Bernoulli 16, 1294–1311 (2010). MR2759180. https://doi.org/10.3150/10-BEJ261
 Carmona, R.: Lectures on BSDEs, Stochastic Control and Stochastic Differential Games with Financial Applications. SIAM (2016). MR3629171. https://doi.org/10.1137/1.9781611974249
 Crépey, S.: Financial Modeling, a Backward Stochastic Differential Equations Perspective. Springer (2013). MR3154654. https://doi.org/10.1007/978-3-642-37113-4
 Diehl, J., Friz, P.: Backward stochastic differential equations with rough drivers. Ann. Probab. 40, 1715–1758 (2012). MR2978136. https://doi.org/10.1214/11-AOP660
 Hu, Y., Peng, S.: Backward stochastic differential equation driven by fractional brownian motion. SIAM J. Control Optim. 48, 1675–1700 (2009). MR2516183. https://doi.org/10.1137/070709451
 Hu, Y., Ocone, D., Song, J.: Some results on backward stochastic differential equations driven by fractional brownian motion. Stochastic Analysis and Applications to Finance, Intediscip. Math. Sci 13, 225–242 (2012). MR2986849. https://doi.org/10.1142/9789814383585_0012
 Jańczak-Borkowska, K.: Generalized BSDEs driven by fractional brownian motion. Stat. Probab. Lett. 83, 805–811 (2013). MR3040307. https://doi.org/10.1016/j.spl.2012.11.029
 Maticiuc, L., Nie, T.: Fractional backward stochastic differential equations and fractional backward variational inequalities. J. Theor. Probab. 28, 337–395 (2015). MR3320972. https://doi.org/10.1007/s10959-013-0509-9
 Nualart, D.: The Malliavin Calculus and Related Topics. 2nd edn. Springer (2006). MR2200233
 Pardoux, E., Peng, S.G.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14, 55–61 (1990). MR1037747. https://doi.org/10.1016/0167-6911(90)90082-6
 Pardoux, E., Răşcanu, A.: Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Springer (2014). MR3308895. https://doi.org/10.1007/978-3-319-05714-9
 Pham, H.: Continous-time Stochastic Control and Optimization with Financial Applications. Springer (2009). MR2533355. https://doi.org/10.1007/978-3-540-89500-8
 Sottinen, T., Viitasaari, L.: Stochastic analysis of gaussian processes via fredholm representation. Int. J. Stoch. Anal. (2016). MR3536393. https://doi.org/10.1155/2016/8694365
 Touzi, N.: Optimal Stochastic Control, Stochastic Target Problems and Backward SDE. Springer (2012). MR2976505. https://doi.org/10.1007/978-1-4614-4286-8
 Čoupek, P., Maslowski, B.: Stochastic evolution equations with Volterra noise. Stoch. Process. Appl. 127, 877–900 (2017). MR3605714. https://doi.org/10.1016/j.spa.2016.07.003
 Wen, J., Shi, Y.: Anticipative backward stochastic differential equations driven by fractional brownian motion. Stat. Probab. Lett. 122, 118–127 (2017). MR3584147. https://doi.org/10.1016/j.spl.2016.11.011
 Zhang, H.: Properties of solution of fractional backward stochastic differential equation. Appl. Math. Comput. 228, 446–453 (2014). MR3151931. https://doi.org/10.1016/j.amc.2013.11.081
 Zhang, J.: Backward Stochastic Differential Equations, Probability Theory and Stochastic Modelling. Springer (2017). MR3699487. https://doi.org/10.1007/978-1-4939-7256-2
 
            