On distributions of exponential functionals of the processes with independent increments
Volume 7, Issue 3 (2020), pp. 291–313
Pub. online: 8 September 2020
Type: Research Article
Open Access
Received
3 February 2020
3 February 2020
Revised
31 July 2020
31 July 2020
Accepted
31 July 2020
31 July 2020
Published
8 September 2020
8 September 2020
Abstract
The aim of this paper is to study the laws of exponential functionals of the processes $X={({X_{s}})_{s\ge 0}}$ with independent increments, namely
and also
Under suitable conditions, the integro-differential equations for the density of ${I_{t}}$ and ${I_{\infty }}$ are derived. Sufficient conditions are derived for the existence of a smooth density of the laws of these functionals with respect to the Lebesgue measure. In the particular case of Lévy processes these equations can be simplified and, in a number of cases, solved explicitly.
References
Abramobitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover publication, Inc., New York (1972). MR0208797
Asmussen, S.: Ruin probabilities. World Scientific, (2000). MR1794582. https://doi.org/10.1142/9789812779311
Barndorff-Nielsen, O., Shiryaev, A.N.: Change of Time and Change of Measure. World Scientific, (2010). MR2779876. https://doi.org/10.1142/7928
Behme, A.: Exponential functionals of Lévy Processes with Jumps, ALEA. Lat. Am. J. Probab. Math. Stat. 12(1), 375–397 (2015). MR3368963
Behme, A., Lindner, A.: On exponential functionals of Lévy processes. J. Theor. Probab. 28, 681–720 (2015). MR3370671. https://doi.org/10.1007/s10959-013-0507-y
Behme, A., Lindner A, A., Reker, J., Rivero, V.: Continuity properties and the support of killed exponential functionals (2019). arXiv:1912.03052
Behme, A., Lindner A, A., Reker, J.: On the law of killed exponential functionals (2020). arXiv:2003.02073
Bertoin, J.: Lévy processes p. 266. Cambridge University Press, (1996). MR1406564
Bertoin, J., Lindler, A., Maller, R.: On continuity Properties of the Law of Integrals of Lévy Processes. In: Séminaire de probabilités XLI, vol. 1934, pp. 137–159 (2008). MR2483729. https://doi.org/10.1007/978-3-540-77913-1_6
Bertoin, J., Yor, M.: Exponential functionals of Lévy processes. Probability Surveys 191–212 (2005). https://doi.org/10.1214/154957805100000122
Bichteler, K., Gravereaux, J.B., Jacod, J.: Malliavin calculus for processes with jumps, 161p. Gordon and Breach Science Publishers, (1987). MR1008471
Boguslawskaya, E., Vostrikova, L.: Revisiting integral functionals of geometric Brownian Motion. Stat. Probab. Lett. 165, 108834 (2020). MR4113845. https://doi.org/10.1016/j.spl.2020.108834
Borodin, A., Salminen, P.: Handbook of Brownian motion – Facts and Formulae, 672p. Birkhäuser Verlag, Basel-Boston-Berlin (2002). MR1912205. https://doi.org/10.1007/978-3-0348-8163-0
Bodnarchuk, S., Kulik, A.: Conditions for the existence and smoothness of the distribution for an Ornstein-Uhlenbeck process with Lévy noise. Theory Probab. Math. Stat. 79, 23–38 (2008). MR2494533. https://doi.org/10.1090/S0094-9000-09-00778-9
Carmona, P., Petit, F., Yor, M.: On the distribution and asymptotic results for exponential functionals of Lévy processes, In: Exponential functionals and principal values related to Brownian motion, pp. 73–130. Biblioteca de la Revista Matematica IberoAmericana. (1997). MR1648657
Carr, P., Wu, L.: Time-changed Lévy processes and option pricing. J. Financ. Econ. 71, 113–141 (2004). https://doi.org/10.1016/S0304-405X(03)00171-5
Dufresne, D.: The distribution of a perpetuity, with applications to risk theory and pension funding. Scand. Actuar. J. 1–2, 39–79 (1990). MR1129194. https://doi.org/10.1080/03461238.1990.10413872
Erickson, K.B., Maller, R.: Generalised Ornstein-Uhlenbeck processes and the convergence of Lévy integrals. In: Séminaire de probabilités, Lect. Notes Math., vol. 1857, pp. 70–94. Springer, Berlin (2004). MR2126967. https://doi.org/10.1007/978-3-540-31449-3_6
Gjessing, H.K., Paulsen, J.: Present value distributions with applications to ruin theory and stochastic equations. Stoch. Process. Appl. 71(1), 123–144 (1997). MR1480643. https://doi.org/10.1016/S0304-4149(97)00072-0
Jacod, J., Shiryaev, A.: Limit theorems for Stochastic Processes, 606 pp. Springer, (1987). MR0959133. https://doi.org/10.1007/978-3-662-02514-7
Jeanblanc, M., Yor, M., Chesnay, M.: Mathematical Methods for Financial Markets, 332p. Springer, (2009). MR2568861. https://doi.org/10.1007/978-1-84628-737-4
Kabanov, Yu., Pergamentshchikov, S.: In the insurance business risky investment are dangerous: the case of negative risk sums. Finance Stoch. 20(2), 355–379 (2016). MR3479325. https://doi.org/10.1007/s00780-016-0292-4
Kardaras, C., Robertson, S.: Continuous time perpetuities and time reversal of diffusions. Finance Stoch. 21(1), 65–110 (2017). MR3590703. https://doi.org/10.1007/s00780-016-0308-0
Kuznetsov, A., Pardo, J.C., Savov, M.: Distributional properties of exponential functionals of Lévy processes. Electron. J. Probab. 8, 1–35 (2012). MR2878787. https://doi.org/10.1214/EJP.v17-1755
Kyprianou, A.: Fluctuations of Lévy processes with applications, second addition edn. Springer, Berlin, Heildelberg (2014). MR3155252. https://doi.org/10.1007/978-3-642-37632-0
Pardo, J.C., Patie, P., Savov, M.: A Wiener-Hopf type factorization for the exponential functional of Lévy processes. J. Lond. Math. Soc. 3, 86–930 (2012). MR3000836. https://doi.org/10.1112/jlms/jds028
Pardo, J.C., Rivero, V., Van Schaik, K.: On the density of exponential functionals of Lévy processes. Bernoulli 1938–1964 (2013). MR3129040. https://doi.org/10.3150/12-BEJ436
Patie, P., Savov, M.: Bernstein-Gamma functions and exponential functionals of Lévy processes. Electron. J. Probab. 23, Paper 75, 101 (2018). MR3835481. https://doi.org/10.1214/18-EJP202
Paulsen, J.: In: Ruin models with investment income. Probability Surveys, vol. 5, pp. 416–434 (2008). MR2476737. https://doi.org/10.1214/08-PS134
Salminen, P., Wallin, O.: Perpetual integral functional of diffusions and their numerical computations. Dept. of Math, Univ. of Oslo, Pure Mathematics 35, (2005). MR2397806. https://doi.org/10.1007/978-3-540-70847-6_26
Salminen, P., Vostrikova, L.: On exponential functionals of the processes with independent increments. Theory Probab. Appl. 63(2), 330–357 (2018). MR3796492. https://doi.org/10.4213/tvp5180
Salminen, P., Vostrikova, L.: On moments of exponential functionals of additive processes. Stat. Probab. Lett. 146, 139–146 (2019). MR3881609. https://doi.org/10.1016/j.spl.2018.11.011
Salminen, P., Yor, M.: Perpetual Integral Functionals as Hitting and Occupation Times. Electron. J. Probab. 10(11), 371–419 (2005). MR2147313. https://doi.org/10.1214/EJP.v10-256
Sato, K.: Lévy Processes and Infinitely Divisible Distributions, 2nd edn. Cambridge University Press, (2013). MR3185174
Shiryaev, A.N.: Essentials of Stochastic Finance: Facts, Models, Theory, p. 834. World Scientific, (1999). MR1695318. https://doi.org/10.1142/9789812385192
Shiryaev, A.N., Cherny, A.S.: Vector Stochastic Integrals and the Fundamental Theorems of Asset Pricing. Proc. Steklov Inst. Math. 237, 6–49 (2002). MR1975582
Vecer, J.: A new PDE approach for pricing arithmetic average Asian options. J. Comput. Finance 105–113 (2001). https://doi.org/10.21314/JCF.2001.064