Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 7, Issue 3 (2020)
  4. Ergodic properties of the solution to a ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Ergodic properties of the solution to a fractional stochastic heat equation, with an application to diffusion parameter estimation
Volume 7, Issue 3 (2020), pp. 339–356
Diana Avetisian   Kostiantyn Ralchenko  

Authors

 
Placeholder
https://doi.org/10.15559/20-VMSTA162
Pub. online: 18 September 2020      Type: Research Article      Open accessOpen Access

Received
11 May 2020
Revised
2 August 2020
Accepted
11 September 2020
Published
18 September 2020

Abstract

The paper deals with a stochastic heat equation driven by an additive fractional Brownian space-only noise. We prove that a solution to this equation is a stationary and ergodic Gaussian process. These results enable us to construct a strongly consistent estimator of the diffusion parameter.

References

[1] 
Adler, R.J., Müller, P. (eds.): Stochastic Modelling in Physical Oceanography. Progress in Probability, vol. 39, p. 467. Birkhäuser Boston, Inc., Boston, MA (1996). MR1383868
[2] 
Avetisian, D.A., Shevchenko, G.M.: Estimation of diffusion parameter for stochastic heat equation with white noise. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics & Mathematics (3), 9–16 (2018).
[3] 
Bally, V., Gyöngy, I., Pardoux, E.: White noise driven parabolic SPDEs with measurable drift. J. Funct. Anal. 120(2), 484–510 (1994). MR1266318. https://doi.org/10.1006/jfan.1994.1040
[4] 
Berzin, C., Latour, A., León, J.R.: Inference on the Hurst Parameter and the Variance of Diffusions Driven by Fractional Brownian Motion. Lecture Notes in Statistics, vol. 216. Springer, Cham (2014). MR3289986. https://doi.org/10.1007/978-3-319-07875-5
[5] 
Bibinger, M., Trabs, M.: On central limit theorems for power variations of the solution to the stochastic heat equation. In: Stochastic Models, Statistics and Their Applications. Springer Proc. Math. Stat., vol. 294, pp. 69–84. Springer (2019). MR4043170
[6] 
Bibinger, M., Trabs, M.: Volatility estimation for stochastic PDEs using high-frequency observations. Stochastic Process. Appl. 130(5), 3005–3052 (2020). MR4080737. https://doi.org/10.1016/j.spa.2019.09.002
[7] 
Björk, T.: A geometric view of interest rate theory. In: Option Pricing, Interest Rates and Risk Management. Handb. Math. Finance, pp. 241–277. Cambridge Univ. Press, Cambridge (2001). MR1848554. https://doi.org/10.1017/CBO9780511569708.008
[8] 
Carmona, R., Nualart, D.: Random nonlinear wave equations: smoothness of the solutions. Probab. Theory Related Fields 79(4), 469–508 (1988). MR0966173. https://doi.org/10.1007/BF00318783
[9] 
Cheridito, P., Kawaguchi, H., Maejima, M.: Fractional Ornstein–Uhlenbeck processes. Electron. J. Probab. 8, 3–14 (2003). MR1961165. https://doi.org/10.1214/EJP.v8-125
[10] 
Chong, C.: High-frequency analysis of parabolic stochastic PDEs. Ann. Statist. 48(2), 1143–1167 (2020). doi:10.1214/19-AOS1841. MR4102691. https://doi.org/10.1214/19-AOS1841
[11] 
Chow, P.-L.: Stochastic Partial Differential Equations. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, p. 281. Chapman & Hall/CRC, Boca Raton, FL (2007). MR2295103
[12] 
Cialenco, I., Kim, H.-J.: Parametric estimation for a parabolic linear SPDE model based on sampled data. arXiv preprint arXiv:2003.08920 (2020).
[13] 
Cialenco, I.: Statistical inference for SPDEs: an overview. Stat. Inference Stoch. Process. 21(2), 309–329 (2018). MR3824970. https://doi.org/10.1007/s11203-018-9177-9
[14] 
Cialenco, I., Huang, Y.: A note on parameter estimation for discretely sampled SPDEs. Stoch. Dyn. 20(3), 2050016 (2020). MR4101083. https://doi.org/10.1142/S0219493720500161
[15] 
Cialenco, I., Kim, H.-J., Lototsky, S.V.: Statistical analysis of some evolution equations driven by space-only noise. Stat. Inference Stoch. Process. 23(1), 83–103 (2020). MR4072253. https://doi.org/10.1007/s11203-019-09205-0
[16] 
Conus, D., Dalang, R.C.: The non-linear stochastic wave equation in high dimensions. Electron. J. Probab. 13, 22–629670 (2008). MR2399293. https://doi.org/10.1214/EJP.v13-500
[17] 
Dalang, R.C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s. Electron. J. Probab. 4, 6–29 (1999). MR1684157. https://doi.org/10.1214/EJP.v4-43
[18] 
Dawson, D.A., Salehi, H.: Spatially homogeneous random evolutions. J. Multivariate Anal. 10(2), 141–180 (1980). MR0575923. https://doi.org/10.1016/0047-259X(80)90012-3
[19] 
Geissert, M., Kovács, M., Larsson, S.: Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise. BIT 49(2), 343–356 (2009). MR2507605. https://doi.org/10.1007/s10543-009-0227-y
[20] 
Gubinelli, M., Lejay, A., Tindel, S.: Young integrals and SPDEs. Potential Anal. 25(4), 307–326 (2006). MR2255351. https://doi.org/10.1007/s11118-006-9013-5
[21] 
Gyöngy, I.: Approximations of stochastic partial differential equations. In: Stochastic Partial Differential Equations and Applications (Trento, 2002). Lecture Notes in Pure and Appl. Math., vol. 227, pp. 287–307. Dekker, New York (2002). MR1919514
[22] 
Hu, Y., Nualart, D.: Stochastic heat equation driven by fractional noise and local time. Probab. Theory Related Fields 143(1-2), 285–328 (2009). MR2449130. https://doi.org/10.1007/s00440-007-0127-5
[23] 
Imkeller, P.: Energy balance models—viewed from stochastic dynamics. In: Stochastic Climate Models (Chorin, 1999). Progr. Probab., vol. 49, pp. 213–240. Birkhäuser, Basel (2001). MR1948298
[24] 
Kaino, Y., Uchida, M.: Parametric estimation for a parabolic linear SPDE model based on discrete observations. Journal of Statistical Planning and Inference (2020). https://doi.org/10.1016/j.jspi.2020.05.004
[25] 
Kovács, M., Larsson, S., Lindgren, F.: Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise. Numer. Algorithms 53(2-3), 309–320 (2010). MR2600932. https://doi.org/10.1007/s11075-009-9281-4
[26] 
Kubilius, K., Mishura, Y., Ralchenko, K.: Parameter Estimation in Fractional Diffusion Models. Bocconi & Springer Series, vol. 8. Bocconi University Press, [Milan]; Springer, Cham (2017). MR3752152. https://doi.org/10.1007/978-3-319-71030-3
[27] 
Lototsky, S.V., Rozovskii, B.L.: Stochastic partial differential equations driven by purely spatial noise. SIAM J. Math. Anal. 41(4), 1295–1322 (2009). MR2540267. https://doi.org/10.1137/070698440
[28] 
Mahdi Khalil, Z., Tudor, C.: Estimation of the drift parameter for the fractional stochastic heat equation via power variation. Mod. Stoch. Theory Appl. 6(4), 397–417 (2019). MR4047392
[29] 
Markussen, B.: Likelihood inference for a discretely observed stochastic partial differential equation. Bernoulli 9(5), 745–762 (2003). MR2047684. https://doi.org/10.3150/bj/1066418876
[30] 
Maslowski, B., Nualart, D.: Evolution equations driven by a fractional Brownian motion. J. Funct. Anal. 202(1), 277–305 (2003). MR1994773. https://doi.org/10.1016/S0022-1236(02)00065-4
[31] 
Millet, A., Sanz-Solé, M.: A stochastic wave equation in two space dimension: smoothness of the law. Ann. Probab. 27(2), 803–844 (1999). MR1698971. https://doi.org/10.1214/aop/1022677387
[32] 
Mishura, Y.S.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Mathematics, vol. 1929. Springer (2008). MR2378138. https://doi.org/10.1007/978-3-540-75873-0
[33] 
Pospíšil, J., Tribe, R.: Parameter estimates and exact variations for stochastic heat equations driven by space-time white noise. Stoch. Anal. Appl. 25(3), 593–611 (2007). MR2321899. https://doi.org/10.1080/07362990701282849
[34] 
Quer-Sardanyons, L., Tindel, S.: The 1-d stochastic wave equation driven by a fractional Brownian sheet. Stochastic Process. Appl. 117(10), 1448–1472 (2007). MR2353035. https://doi.org/10.1016/j.spa.2007.01.009
[35] 
Ralchenko, K., Shevchenko, G.: Existence and uniqueness of mild solution to fractional stochastic heat equation. Mod. Stoch. Theory Appl. 6(1), 57–79 (2019). MR3935427. https://doi.org/10.15559/18-vmsta122
[36] 
Tindel, S., Tudor, C.A., Viens, F.: Stochastic evolution equations with fractional Brownian motion. Probab. Theory Related Fields 127(2), 186–204 (2003). MR2013981. https://doi.org/10.1007/s00440-003-0282-2
[37] 
Tudor, C.A.: Analysis of Variations for Self-similar Processes. Probability and its Applications (New York). Springer (2013). MR3112799. https://doi.org/10.1007/978-3-319-00936-0
[38] 
Walsh, J.B.: An introduction to stochastic partial differential equations. In: École D’été de Probabilités de Saint-Flour, XIV—1984. Lecture Notes in Math., vol. 1180, pp. 265–439. Springer (1986). MR0876085. https://doi.org/10.1007/BFb0074920
[39] 
Young, L.C.: An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67(1), 251–282 (1936). MR1555421. https://doi.org/10.1007/BF02401743
[40] 
Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields 111(3), 333–374 (1998). MR1640795. https://doi.org/10.1007/s004400050171

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2020 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Stochastic partial differential equation fractional Brownian motion stationary process ergodic process strong consistency

MSC2010
60G22 60H15 62F10

Funding
The second author acknowledges that the present research is carried through within the frame and support of the ToppForsk project nr. 274410 of the Research Council of Norway with title STORM: Stochastics for Time-Space Risk Models.

Metrics
since March 2018
816

Article info
views

707

Full article
views

462

PDF
downloads

134

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy