A pure-jump mean-reverting short rate model
Volume 7, Issue 2 (2020), pp. 113–134
Pub. online: 20 April 2020
Type: Research Article
Open Access
Received
23 April 2019
23 April 2019
Revised
27 March 2020
27 March 2020
Accepted
27 March 2020
27 March 2020
Published
20 April 2020
20 April 2020
Abstract
A new multi-factor short rate model is presented which is bounded from below by a real-valued function of time. The mean-reverting short rate process is modeled by a sum of pure-jump Ornstein–Uhlenbeck processes such that the related bond prices possess affine representations. Also the dynamics of the associated instantaneous forward rate is provided and a condition is derived under which the model can be market-consistently calibrated. The analytical tractability of this model is illustrated by the derivation of an explicit plain vanilla option price formula. With view on practical applications, suitable probability distributions are proposed for the driving jump processes. The paper is concluded by presenting a post-crisis extension of the proposed short and forward rate model.
References
Benth, F., Kallsen, J., Meyer-Brandis, T.: A non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing. Appl. Math. Finance 14(2), 153–169 (2006). MR2323278. https://doi.org/10.1080/13504860600725031
Benth, F., Saltyte-Benth, J., Koekebakker, S.: Stochastic Modeling of Electricity and Related Markets, 1st edn. World Scientific, (2008). MR2416686. https://doi.org/10.1142/9789812812315
Björk, T., Kabanov, Y., Runggaldier, W.: Bond market structure in the presence of marked point processes. Math. Finance 7, 211–239 (1997). MR1446647. https://doi.org/10.1111/1467-9965.00031
Brace, A., Gatarek, D., Musiela, M.: The market model of interest rate dynamics. Math. Finance 7, 127–155 (1997). MR1446645. https://doi.org/10.1111/1467-9965.00028
Brigo, D., Mercurio, F.: A deterministic-shift extension of analytically-tractable and time-homogeneous short-rate models. Finance Stoch. 5(3), 369–387 (2001). MR1849427. https://doi.org/10.1007/PL00013541
Brigo, D., Mercurio, F.: Interest Rate Models – Theory and Practice, 1st edn. Springer, (2001). MR1846525. https://doi.org/10.1007/978-3-662-04553-4
Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Finance 2(4), 61–73 (1999). https://doi.org/10.21314/JCF.1999.043
Cont, R., Tankov, P.: Financial Modeling with Jump Processes, 1st edn. Chapman & Hall/CRC, (2004). MR2042661
Cox, J., Ingersoll, J., Ross, S.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985). MR0785475. https://doi.org/10.2307/1911242
Crépey, S., Grbac, Z., Ngor, N., Skovmand, D.: A Lévy HJM multiple-curve model with application to CVA computation. Quant. Finance 15(3), 401–419 (2015). MR3313198. https://doi.org/10.1080/14697688.2014.942232
Crépey, S., Grbac, Z., Nguyen, H.: A multiple-curve HJM model of interbank risk. Math. Financ. Econ. 6, 155–190 (2013). MR2966729. https://doi.org/10.1007/s11579-012-0083-4
Cuchiero, C., Fontana, C., Gnoatto, A.: A General HJM Framework for Multiple Yield Curve Modeling. Finance Stoch. 20(2), 267–320 (2016). MR3479323. https://doi.org/10.1007/s00780-016-0291-5
Cuchiero, C., Fontana, C., Gnoatto, A.: Affine Multiple Yield Curve Models. Math. Finance 29(2), 568–611 (2019). preprint: arXiv:1603.00527v2. MR3925431. https://doi.org/10.1111/mafi.12183
Di Nunno, G., Øksendal, B., Proske, F.: Malliavin Calculus for Lévy Processes with Applications to Finance, 1st edn. Springer, (2009). MR2460554. https://doi.org/10.1007/978-3-540-78572-9
Duffie, D., Filipovic, D., Schachermayer, W.: Affine Processes and Applications in Finance. Ann. Appl. Probab. 13, 984–1053 (2003). MR1994043. https://doi.org/10.1214/aoap/1060202833
Eberlein, E., Gerhart, C., Grbac, Z.: Multiple curve Lévy forward price model allowing for negative interest rates. Mathematical Finance (2019). forthcoming, preprint: arXiv:1805.02605v1. https://doi.org/10.1007/978-3-030-26106-1
Eberlein, E., Kluge, W.: Exact pricing formulae for caps and swaptions in a Lévy term structure model. J. Comput. Finance 9(2), 99–125 (2006). MR2359367. https://doi.org/10.21314/JCF.2005.158
Eberlein, E., Kluge, W.: Valuation of floating range notes in Lévy term structure models. Math. Finance 16, 237–254 (2006). MR2212265. https://doi.org/10.1111/j.1467-9965.2006.00270.x
Eberlein, E., Kluge, W., Papapantoleon, A.: Symmetries in Lévy Term Structure Models. Int. J. Theor. Appl. Finance 9(6), 967–986 (2006). MR2260054. https://doi.org/10.1142/S0219024906003809
Filipovic, D.: Term-Structure Models. Springer Finance, Springer, (2009). MR2553163. https://doi.org/10.1007/978-3-540-68015-4
Filipovic, D., Trolle, A.: The Term Structure of Interbank Risk. J. Financ. Econ. 109(3), 707–733 (2013). https://doi.org/10.1016/j.jfineco.2013.03.014
Gallitschke, J., Seifried, S., Seifried, F.: Post-crisis Interest Rates: Xibor Mechanics and Basis Spreads. J. Bank. Finance 78, 142–152 (2017). https://doi.org/10.1016/j.jbankfin.2017.01.002
Grasselli, M., Miglietta, G.: A Flexible Spot Multiple-curve Model. Quant. Finance 6(10), 1465–1477 (2016). MR3564921. https://doi.org/10.1080/14697688.2015.1108521
Grbac, Z., Papapantoleon, A., Schoenmakers, J., Skovmand, D.: Affine LIBOR Models with Multiple Curves: Theory, Examples and Calibration. SIAM J. Financ. Math. 6(1), 984–1025 (2015). MR3413586. https://doi.org/10.1137/15M1011731
Grbac, Z., Runggaldier, W.: Interest Rate Modeling: Post-Crisis Challenges and Approaches, Springer Briefs in Quantitative Finance, 1st edn. Springer, (2015). MR3467166. https://doi.org/10.1007/978-3-319-25385-5
Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica 60, 77–105 (1992). https://doi.org/10.2307/2951677
Hess, M.: Pricing Energy, Weather and Emission Derivatives under Future Information. PhD Dissertation, University Duisburg-Essen, Germany (2013). http://duepublico.uni-duisburg-essen.de/servlets/DocumentServlet?id=31060
Hull, J., White, A.: Pricing interest-rate-derivative securities. Rev. Financ. Stud. 3(4), 573–592 (1990). https://doi.org/10.1093/rfs/3.4.573
Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, (2003). MR1943877. https://doi.org/10.1007/978-3-662-05265-5
Keller-Ressel, M., Papapantoleon, A., Teichmann, J.: The Affine LIBOR Models. Math. Finance 23(4), 627–658 (2013). MR3094715. https://doi.org/10.1111/j.1467-9965.2012.00531.x
Morino, L., Runggaldier, W.: On multicurve models for the term structure. In: Nonlinear Economic Dynamics and Financial Modeling, pp. 275–290. Springer, (2014). MR3329961
Nguyen, T., Seifried, F.: The Multi-curve Potential Model. Int. J. Theor. Appl. Finance 18(7), 1550049 (2015). MR3423186. https://doi.org/10.1142/S0219024915500491
Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, (2005). MR2020294
Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge studies in advanced mathematics, vol. 68 (1999). MR1739520
Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5(2), 177–188 (1977). https://doi.org/10.1016/0304-405X(77)90016-2