Distribution of shifted discrete random walk generated by distinct random variables and applications in ruin theory
Volume 11, Issue 3 (2024), pp. 323–357
Pub. online: 19 March 2024
Type: Research Article
Open Access
Received
3 November 2023
3 November 2023
Revised
13 February 2024
13 February 2024
Accepted
22 February 2024
22 February 2024
Published
19 March 2024
19 March 2024
Abstract
In this paper, the distribution function
\[ \varphi (u)=\mathbb{P}\Bigg(\underset{n\geqslant 1}{\sup }{\sum \limits_{i=1}^{n}}({X_{i}}-\kappa )\lt u\Bigg),\]
and the generating function of $\varphi (u+1)$ are set up. We assume that $u\in \mathbb{N}\cup \{0\}$, $\kappa \in \mathbb{N}$, the random walk $\{{\textstyle\sum _{i=1}^{n}}{X_{i}},\hspace{0.1667em}n\in \mathbb{N}\}$ involves $N\in \mathbb{N}$ periodically occurring distributions, and the integer-valued and nonnegative random variables ${X_{1}},{X_{2}},\dots $ are independent. This research generalizes two recent works where $\{\kappa =1,N\in \mathbb{N}\}$ and $\{\kappa \in \mathbb{N},N=1\}$ were considered respectively. The provided sequence of sums $\{{\textstyle\sum _{i=1}^{n}}({X_{i}}-\kappa ),\hspace{0.1667em}n\in \mathbb{N}\}$ generates the so-called multi-seasonal discrete-time risk model with arbitrary natural premium and its known distribution enables to compute the ultimate time ruin probability $1-\varphi (u)$ or survival probability $\varphi (u)$. The obtained theoretical statements are verified in several computational examples where the values of the survival probability $\varphi (u)$ and its generating function are provided when $\{\kappa =2,\hspace{0.1667em}N=2\}$, $\{\kappa =3,\hspace{0.1667em}N=2\}$, $\{\kappa =5,\hspace{0.1667em}N=10\}$ and ${X_{i}}$ adopts the Poisson and some other distributions. The conjecture on the nonsingularity of certain matrices is posed.References
Alencenovič, A., Grigutis, A.: Bi-seasonal discrete time risk model with income rate two. Commun. Stat., Theory Methods 52(17), 6161–6178 (2023). MR4611568. https://doi.org/10.1080/03610926.2022.2026962
Arguin, L.P., Hartung, L., Kistler, N.: High points of a random model of the Riemann-zeta function and Gaussian multiplicative chaos. Stoch. Process. Appl. 151, 174–190 (2022). MR4441506. https://doi.org/10.1016/j.spa.2022.04.017
Asmussen, S., Albrecher, H.: Ruin Probabilities, 2nd edn. Advanced Series on Statistical Science and Applied Probability. World Scientific Publishing Company (2010). MR2766220. https://doi.org/10.1142/9789814282536
Blaževičius, K., Bieliauskienė, E., Šiaulys, J.: Finite-time ruin probability in the inhomogenous claim case. Lith. Math. J. 50, 260–270 (2010). MR2719562. https://doi.org/10.1007/s10986-010-9084-2
Bohun, V., Marynych, A.: Random walks with sticky barriers. Mod. Stoch. Theory Appl. 9(3), 245–263 (2022). MR4462023. https://doi.org/10.15559/22-vmsta202
Buraczewski, D., Dong, C., Iksanov, A., Marynych, A.: Critical branching processes in a sparse random environment. Mod. Stoch. Theory Appl. 10(4), 397–411 (2023). MR4655407. https://doi.org/10.15559/23-vmsta231
Cang, Y., Yang, Y., Shi, X.: A note on the uniform asymptotic behavior of the finite-time ruin probability in a nonstandard renewal risk model. Lith. Math. J. 60, 161–172 (2020). MR4110665. https://doi.org/10.1007/s10986-020-09473-x
Castañer, A., Claramunt, M.M., Gathy, M., Lefèvre, C., Mármol, M.: Ruin problems for a discrete time risk model with non-homogeneous conditions. Scand. Actuar. J. 2013(2), 83–102 (2013). MR3041119. https://doi.org/10.1080/03461238.2010.546144
Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Thick points for planar brownian motion and the Erdős-Taylor conjecture on random walk. Acta Math. 186(2), 239–270 (2001). MR1846031. https://doi.org/10.1007/BF02401841
Dickson, D.C.M.: On numerical evaluation of finite time survival probabilities. Br. Actuar. J. 5(3), 575–584 (1999). https://doi.org/10.1017/S135732170000057X
Edelman, A., Rao, N.R.: Random matrix theory. Acta Numer. 14, 233–297 (2005). MR2168344. https://doi.org/10.1017/S0962492904000236
Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2, 2nd edn. Wiley (1971). MR0270403
Gerber, H.: Mathematical fun with ruin theory. Insur. Math. Econ. 7(1), 15–23 (1988). MR0971860. https://doi.org/10.1016/0167-6687(88)90091-1
Gerber, H.: Mathematical fun with the compound binomial process. ASTIN Bull. 18(2), 161–168 (1988). https://doi.org/10.2143/AST.18.2.2014949
Grigutis, A.: Exact expression of ultimate time survival probability in homogeneous discrete-time risk model. AIMS Math. 8(3), 5181–5199 (2023). MR4525843. https://doi.org/10.3934/math.2023260
Grigutis, A., Jankauskas, J.: On $2\times 2$ determinants originating from survival probabilities in homogeneous discrete time risk model. Results Math. 77(5), 204 (2022). MR4470312. https://doi.org/10.1007/s00025-022-01736-y
Grigutis, A., Jankauskas, J., Šiaulys, J.: Multi seasonal discrete time risk model revisited. Lith. Math. J. 63, 466–486 (2023). MR4691924. https://doi.org/10.1007/s10986-023-09613-z
Grigutis, A., Nakliuda, A.: Note on the bi-risk discrete time risk model with income rate two. Mod. Stoch. Theory Appl. 9(4), 401–412 (2022). MR4510380. https://doi.org/10.15559/22-vmsta209
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012). MR2978290
Kendall, D.G.: The genealogy of genealogy branching processes before (and after) 1873. Bull. Lond. Math. Soc. 7(3), 225–253 (1975). 11. MR0426186. https://doi.org/10.1112/blms/7.3.225
Landriault, D.: On a generalization of the expected discounted penalty function in a discrete-time insurance risk model. Appl. Stoch. Models Bus. Ind. 24(6), 525–539 (2008). MR2473024. https://doi.org/10.1002/asmb.713
Lefèvre, C., Simon, M.: Schur-constant and related dependence models, with application to ruin probabilities. Methodol. Comput. Appl. Probab. 23, 317–339 (2021). MR4224918. https://doi.org/10.1007/s11009-019-09744-2
Li, S., Huang, F., Jin, C.: Joint distributions of some ruin related quantities in the compound binomial risk model. Stoch. Models 29(4), 518–539 (2013). MR3175857. https://doi.org/10.1080/15326349.2013.847610
Li, S., Lu, Y., Garrido, J.: A review of discrete-time risk models. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 103, 321–337 (2009). MR2582636. https://doi.org/10.1007/BF03191910
Losidis, S.: Covariance between the forward recurrence time and the number of renewals. Mod. Stoch. Theory Appl. 9(1), 1–16 (2022). MR4388707. https://doi.org/10.15559/21-vmsta194
Martinsson, P.G., Tropp, J.A.: Randomized numerical linear algebra: Foundations and algorithms. Acta Numer. 29, 403–572 (2020). MR4189294. https://doi.org/10.1017/s0962492920000021
Miao, Y., Sendova, K.P., Jones, B.L.: On a risk model with dual seasonalities. North Am. Actuar. J. 27(1), 166–184 (2023). MR4562596. https://doi.org/10.1080/10920277.2022.2068611
Pearson, K.: The problem of the random walk. Nature 72, 294 (1905). https://doi.org/10.1038/072294b0
Picard, P., Lefèvre, C.: Probabilité de ruine Éventuelle dans un modèle de risque à temps discret. J. Appl. Probab. 40(3), 543–556 (2003). MR1993252. https://doi.org/10.1239/jap/1059060887
Pollaczek, F.: Order statistics of partial sums of mutually independent random variables. J. Appl. Probab. 12(2), 390–395 (1975). MR0378092. https://doi.org/10.2307/3212456
Raducan, A.M., Vernic, R., Zbaganu, G.: Recursive calculation of ruin probabilities at or before claim instants for non-identically distributed claims. ASTIN Bull. 45(2), 421–443 (2015). MR3394025. https://doi.org/10.1017/asb.2014.30
Santana, D.J., Rincón, L.: Ruin probabilities as functions of the roots of a polynomial. Mod. Stoch. Theory Appl. 10(3), 247–266 (2023). MR4608187. https://doi.org/10.15559/23-vmsta226
Shiu, E.: Calculation of the probability of eventual ruin by beekman’s convolution series. Insur. Math. Econ. 7(1), 41–47 (1988). MR0971864. https://doi.org/10.1016/0167-6687(88)90095-9
Shiu, E.: Ruin probability by operational calculus. Insur. Math. Econ. 8(3), 243–249 (1989). MR1031374. https://doi.org/10.1016/0167-6687(89)90060-7
Spitzer, F.: A combinatorial lemma and its application to probability theory. Trans. Am. Math. Soc. 82, 323–339 (1956). MR0079851. https://doi.org/10.2307/1993051
Spitzer, F.: Principles of Random Walk. Graduate Texts in Mathematics. Springer, Germany (1988). MR0388547
Tzaninis, S.M.: Applications of a change of measures technique for compound mixed renewal processes to the ruin problem. Mod. Stoch. Theory Appl. 9(1), 45–64 (2022). MR4388709. https://doi.org/10.15559/21-vmsta192