Sample path properties of multidimensional integral with respect to stochastic measure
Volume 11, Issue 4 (2024), pp. 421–437
Pub. online: 30 May 2024
Type: Research Article
Open Access
Received
11 January 2024
11 January 2024
Revised
24 March 2024
24 March 2024
Accepted
30 April 2024
30 April 2024
Published
30 May 2024
30 May 2024
Abstract
The integral with respect to a multidimensional stochastic measure, assuming only its σ-additivity in probability, is studied. The continuity and differentiability of realizations of the integral are established.
References
Adler, R.J.: The Geometry of Random Fields. John Wiley & Sons, Chichester (1981). MR0611857
Andrianov, P., Skopina, M.: On Jackson-type inequalities associated with separable Haar wavelets. Int. J. Wavelets Multiresolut. Inf. Process. 14(03), 1650005 (2016). MR3503421. https://doi.org/10.1142/S0219691316500053
Bai, S.: Limit theorems for conservative flows on multiple stochastic integrals. J. Theor. Probab. 35, 917–948 (2022). MR4414409. https://doi.org/10.1007/s10959-021-01090-9
Besov, O.V., Il’in, V.P., Nikol’skii, S.M.: Integral Representations of Functions and Imbedding Theorems, V. 1, 2. John Wiley & Sons, New York (1978, 1979). MR0521808
Biermé, H., Lacaux, C.: Hölder regularity for operator scaling stable random fields. Stochastic Process. Appl. 119(7), 2222–2248 (2009). MR2531090. https://doi.org/10.1016/j.spa.2008.10.008
Biermé, H., Lacaux, C.: Modulus of continuity of some conditionally sub-Gaussian fields, application to stable random fields. Bernoulli 21(3), 1719–1759 (2015). MR3352059. https://doi.org/10.3150/14-BEJ619
Clarke De la Cerda, J., Tudor, C.A.: Wiener integrals with respect to the Hermite random field and applications to the wave equation. Collect. Math. 65(3), 341–356 (2014). MR3240998. https://doi.org/10.1007/s13348-014-0108-9
DeVore, R.A., Popov, V.A.: Interpolation of Besov spaces. Trans. Amer. Math. Soc. 305(1), 397–414 (1988). MR0920166. https://doi.org/10.2307/2001060
Gikhman, I.I., Skorokhod, A.V.: Introduction to the Theory of Random Processes. Dover Publications Inc, New York (1996). MR1435501
Harang, F.A.: An extension of the sewing lemma to hyper-cubes and hyperbolic equations driven by multi-parameter Young fields. Stoch. Partial Differ. Equ. Anal. Comput. 9(1), 746–788 (2021). MR4297239. https://doi.org/10.1007/s40072-020-00184-5
Hinojosa-Calleja, A.: Exact uniform modulus of continuity for q-isotropic Gaussian random fields. Statist. Probab. Lett. 197, 109813 (2023). MR4557375. https://doi.org/10.1016/j.spl.2023.109813
Kamont, A.: A discrete characterization of Besov spaces. Approx. Theory Appl. 13, 63–77 (1997). MR1750304
Kashin, B.S., Saakyan, A.A.: Orthogonal Series vol. 75. American Mathematical Soc. (1989). MR1007141. https://doi.org/10.1090/mmono/075
Krylov, N.V.: Introduction to the Theory of Random Processes vol. 43. American Mathematical Soc., Providence (2002). MR1885884. https://doi.org/10.1090/gsm/043
Kwapień, S., Woyczyński, W.A.: Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston (1992). MR1167198. https://doi.org/10.1007/978-1-4612-0425-1
Leoni, G.: A First Course in Sobolev Spaces. AMS, Providence (2017). MR3726909. https://doi.org/10.1090/gsm/181
Nualart, D.: Malliavin Calculus and Related Topic, 2nd edn. Springer (2006) MR2200233
Panigrahia, S., Royb, P., Xiao, Y.: Maximal moments and uniform modulus of continuity for stable random fields. Stochastic Process. Appl. 136, 92–124 (2021). MR4238104. https://doi.org/10.1016/j.spa.2021.02.002
Radchenko, V.: Sample functions of stochastic measures and Besov spaces. Theory Probab. Appl. 54, 160–168 (2010). MR2766653. https://doi.org/10.1137/S0040585X97984048
Radchenko, V.: General Stochastic Measures: Integration, Path Properties, and Equations. Wiley – ISTE, London (2022) MR4687103
Radchenko, V.M., Stefans’ka, N.O.: Fourier series and Fourier-Haar series for stochastic measures. Theory Probab. Math. Statist. 99(2), 203–211 (2018) MR3666879. https://doi.org/10.1090/tpms/1041
Romanyuk, V.S.: Multiple Haar basis and its properties. Ukrainian Math. J. 67(9), 1411–1425 (2016). MR3473729. https://doi.org/10.1007/s11253-016-1162-0
Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators and Nonlinear Partial Differential Equations. Walter de Gruyter, Berlin (1996). MR1419319. https://doi.org/10.1515/9783110812411
Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman and Hall, London (1994). MR1280932
Sottinen, T., Tudor, C.A.: On the equivalence of multiparameter Gaussian processes. J. Theor. Probab. 19(2), 461–485 (2006). MR2283386. https://doi.org/10.1007/s10959-006-0022-5
Sottinen, T., Viitasaari, L.: Fredholm representation of multiparameter Gaussian processes with applications to equivalence in law and series expansions. Mod. Stoch. Theory Appl. 2(3), 287–295 (2015). MR3407507. https://doi.org/10.15559/15-VMSTA39CNF
Triebel, H.: Theory of Function Spaces. Geest & Portig K.-G. and Birkhäuser, Leipzig and Basel (1983). MR0730762. https://doi.org/10.1007/978-3-0346-0416-1
Triebel, H.: The Structure of Functions. Birkhäuser, Basel (2001). MR3013187
Tudor, C.: Non-Gaussian Selfsimilar Stochastic Processes. Springer (2023). MR4647498. https://doi.org/10.1007/978-3-031-33772-7
Xiao, Y.: In: Khoshnevisan, D., Rassoul-Agha, F. (eds.) Sample Path Properties of Anisotropic Gaussian Random Fields, pp. 145–212. Springer, Berlin, Heidelberg (2009). MR2508776. https://doi.org/10.1007/978-3-540-85994-9_5
Xiao, Y.: Uniform modulus of continuity of random fields. Monatsh. Math. 159, 163–184 (2010). MR2564392. https://doi.org/10.1007/s00605-009-0133-z