Random functions $\mu (x)$, generated by values of stochastic measures are considered. The Besov regularity of the continuous paths of $\mu (x)$, $x\in {[0,1]^{d}}$, is proved. Fourier series expansion of $\mu (x)$, $x\in [0,2\pi ]$, is obtained. These results are proved under weaker conditions than similar results in previous papers.
The stochastic transport equation is considered where the randomness is given by a symmetric integral with respect to a stochastic measure. For a stochastic measure, only σ-additivity in probability and continuity of paths is assumed. Existence and uniqueness of a weak solution to the equation are proved.
A stochastic parabolic equation on $[0,T]\times \mathbb{R}$ driven by a general stochastic measure, for which we assume only σ-additivity in probability, is considered. The asymptotic behavior of its solution as $t\to \infty $ is studied.
A stochastic parabolic equation on $[0,T]\times \mathbb{R}$ driven by a general stochastic measure is considered. The averaging principle for the equation is established. The convergence rate is compared with other results on related topics.
A stochastic heat equation on $[0,T]\times \mathbb{R}$ driven by a general stochastic measure $d\mu (t)$ is investigated in this paper. For the integrator μ, we assume the σ-additivity in probability only. The existence, uniqueness, and Hölder regularity of the solution are proved.