Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 5, Issue 4 (2018)
  4. On the infinite divisibility of distribu ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

On the infinite divisibility of distributions of some inverse subordinators
Volume 5, Issue 4 (2018), pp. 509–519
Arun Kumar   Erkan Nane  

Authors

 
Placeholder
https://doi.org/10.15559/18-VMSTA108
Pub. online: 20 July 2018      Type: Research Article      Open accessOpen Access

Received
18 March 2018
Revised
21 June 2018
Accepted
29 June 2018
Published
20 July 2018

Abstract

We consider the infinite divisibility of distributions of some well-known inverse subordinators. Using a tail probability bound, we establish that distributions of many of the inverse subordinators used in the literature are not infinitely divisible. We further show that the distribution of a renewal process time-changed by an inverse stable subordinator is not infinitely divisible, which in particular implies that the distribution of the fractional Poisson process is not infinitely divisible.

References

[1] 
Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, Cambridge, U.K. (2009). MR2512800. https://doi.org/10.1017/CBO9780511809781
[2] 
Beghin, L., Orsingher, E.: Fractional Poisson processes and related random motions. Electron. J. Probab. 14, 1790–1826 (2009). MR2535014. https://doi.org/10.1214/EJP.v14-675
[3] 
Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996). MR1406564
[4] 
Biard, R., Saussereau, B.: Fractional Poisson process: long-range dependence and applications in ruin theory. J. Appl. Probab. 51, 727–740 (2014). MR3256223. https://doi.org/10.1239/jap/1409932670
[5] 
Chung, K.L.: A Course in Probability Theory, 3rd edn. Academic Press, San Diego, USA (2001). MR1796326
[6] 
Halgreen, C.: Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions. Z. Wahrscheinlichkeitstheor. Verw. Geb. 47, 13–17 (1979). MR0521527. https://doi.org/10.1007/BF00533246
[7] 
Janczura, J., Orzel, S., Wylomanska, A.: Subordinated α-stable Ornstein-Uhlenbeck process as a tool for financial data description. Phys. A 390, 4379–4387 (2011). https://doi.org/10.1016/j.physa.2011.07.007
[8] 
Kumar, A., Vellaisamy, P.: Inverse tempered stable subordinators. Stat. Probab. Lett. 103, 134–141 (2015). MR3350873. https://doi.org/10.1016/j.spl.2015.04.010
[9] 
Laskin, N.: Fractional Poisson process. Commun. Nonlinear Sci. Numer. Simul. 8, 201–213 (2003). MR2007003. https://doi.org/10.1016/S1007-5704(03)00037-6
[10] 
Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16, 1600–1620 (2011). MR2835248. https://doi.org/10.1214/EJP.v16-920
[11] 
Meerschaert, M.M., Nane, E., Vellaisamy, P.: Transient anamolous subdiffusions on bounded domains. Proc. Am. Math. Soc. 141, 699–710 (2013). MR2996975. https://doi.org/10.1090/S0002-9939-2012-11362-0
[12] 
Meerschaert, M.M., Nane, E., Xiao, Y.: Correlated continuous time random walks. Stat. Probab. Lett. 79, 1194–1202 (2009). MR2519002. https://doi.org/10.1016/j.spl.2009.01.007
[13] 
Meerschaert, M.M., Scheffler, H.: Limit theorems for continuous time random walks with infinite mean waiting times. J. Appl. Probab. 41(3), 623–638 (2004). MR2074812. https://doi.org/10.1239/jap/1091543414
[14] 
Meerschaert, M.M., Scheffler, H.: Triangular array limits for continuous time random walks. Stoch. Process. Appl. 118, 1606–1633 (2008). MR2442372. https://doi.org/10.1016/j.spa.2007.10.005
[15] 
Meerschaert, M.M., Straka, P.: Inverse stable subordinators. Math. Model. Nat. Phenom. 8, 1–16 (2013). MR3049524. https://doi.org/10.1051/mmnp/20138201
[16] 
Mikosch, T.: Non-Life Insurance Mathematics: An Introduction with the Poisson Process. Springer (2009). MR2503328. https://doi.org/10.1007/978-3-540-88233-6
[17] 
Nane, E.: Stochastic solutions of a class of higher order Cauchy problems in ${\mathbb{R}^{d}}$. Stoch. Dyn. 10, 341–366 (2010). MR2671380. https://doi.org/10.1142/S021949371000298X
[18] 
Orsingher, E., Beghin, L.: Fractional diffusion equations and processes with randomly varying time. Ann. Probab., 206–249 (2009). MR2489164. https://doi.org/10.1214/08-AOP401
[19] 
Repin, O.N., Saichev, A.I.: Fractional Poisson law. Radiophys. Quantum Electron. 43, 738–741 (2000). MR1910034. https://doi.org/10.1023/A:1004890226863
[20] 
Rosiński, J.: Tempering stable processes. Stoch. Process. Appl. 117, 677–707 (2007). MR2327834. https://doi.org/10.1016/j.spa.2006.10.003
[21] 
Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999). MR1739520
[22] 
Steutel, F.W.: Infinite divisibility in theory and practice. Scand. J. Stat. 6, 57–64 (1979). MR0538596
[23] 
Steutel, F.W., Van Harn, K.: Infinite Divisibility of Probability Distributions on the Real Line. Marcel Dekker, New York (2004). MR2011862
[24] 
Vellaisamy, P., Kumar, A.: First-exit times of an inverse Gaussian process. Stochastics 1, 29–48 (2018). MR3750637. https://doi.org/10.1080/17442508.2017.1311897
[25] 
Wong, R.: Asymptotic Approximations of Integrals. Academic Press, Boston (1989). MR1016818

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2018 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Infinite divisibility subordinators inverse subordinators fractional Poisson process

Metrics
since March 2018
898

Article info
views

1050

Full article
views

557

PDF
downloads

186

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy