Stochastic models associated to a Nonlocal Porous Medium Equation
Volume 5, Issue 4 (2018), pp. 457–470
Pub. online: 19 September 2018
Type: Research Article
Open Access
Received
24 April 2018
24 April 2018
Revised
19 July 2018
19 July 2018
Accepted
24 August 2018
24 August 2018
Published
19 September 2018
19 September 2018
Abstract
The nonlocal porous medium equation considered in this paper is a degenerate nonlinear evolution equation involving a space pseudo-differential operator of fractional order. This space-fractional equation admits an explicit, nonnegative, compactly supported weak solution representing a probability density function. In this paper we analyze the link between isotropic transport processes, or random flights, and the nonlocal porous medium equation. In particular, we focus our attention on the interpretation of the weak solution of the nonlinear diffusion equation by means of random flights.
References
Benachour, S., Chassaing, P., Roynette, B., Vallois, P.: Processus associés a l’équation des milieux poreux. Annali della Scuola Superiore di Pisa 4, 793–832 (1996). MR1469575
Biler, P., Karch, G., Monneau, R.: Nonlinear diffusion of dislocation density and self-similar solutions. Communications in Mathematical Physics 294, 145–168 (2010). MR2575479. https://doi.org/10.1007/s00220-009-0855-8
Biler, P., Imbert, C., Karch, G.: Barenblatt profiles for a non local porous medium equation. C.R. Acad. Sci. Paris, Ser. I 349, 641–645 (2011). MR2817383. https://doi.org/10.1016/j.crma.2011.06.003
Biler, P., Imbert, C., Karch, G.: The nonlocal porous medium equation: Barenblatt profiles and other weak solutions. Archive for Rational Mechanics and Analysis 215, 497–529 (2015). MR3294409. https://doi.org/10.1007/s00205-014-0786-1
Caffarelli, L., Vazquez, J.L.: Nonlinear porous medium flow with fractional potential pressure. Archive for Rational Mechanics and Analysis 202, 537–565 (2011). MR2847534. https://doi.org/10.1007/s00205-011-0420-4
Caffarelli, L., Vazquez, J.L.: Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems 29, 1393–1404 (2011). MR2773189. https://doi.org/10.3934/dcds.2011.29.1393
De Gregorio, A.: On random flights with non-uniformly distributed directions. Journal of Statistical Physics 147, 382–411 (2012). MR2922773. https://doi.org/10.1007/s10955-012-0471-4
De Gregorio, A.: A family of random walks with generalized Dirichlet steps. Journal of Mathematical Physics 55, 023302 (2014). 17 pp. MR3202881. https://doi.org/10.1063/1.4863475
De Gregorio, A., Orsingher, E., Sakhno, L.: Motions with finite velocity analyzed with order statistics and differential equations. Theory of Probability and Mathematical Statistics 71, 63–79 (2005). MR2144321. https://doi.org/10.1090/S0094-9000-05-00648-4
De Gregorio, A., Orsingher, E.: Flying randomly in ${\mathbb{R}^{d}}$ with Dirichlet displacements. Stochastic Processes and their Applications 122, 676–713 (2012). MR2868936. https://doi.org/10.1016/j.spa.2011.10.009
De Gregorio, A., Orsingher, E.: Random flights connecting Porous Medium and Euler-Poisson-Darboux equations (2017). 20 pp. arXiv:1709.07663
Ekhaus, M., Seppäläinen, T.: Stochastic dynamics macroscopically governed by the porous medium equation for isothermal flow. Annales Academiæ Scientiarum Fennicæ 21, 309–352 (1996). MR1404089
Feng, S., Iscoe, I., Seppäläinen, T.: A microscopic mechanism for the porous medium equation. Stochastic Processes and their Applications 66, 147–182 (1997). MR1440397. https://doi.org/10.1016/S0304-4149(96)00121-4
Garra, R., Orsingher, E.: Random flights governed by Klein-Gordon-type partial differential equations. Stochastic Processes and their Applications 124, 2171–2187 (2014). MR3188352. https://doi.org/10.1016/j.spa.2014.02.004
Garra, R., Polito, F., Orsingher, E.: Fractional Klein-Gordon equations and related stochastic processes. Journal of Statistical Physics 155, 777–809 (2014). MR3192184. https://doi.org/10.1007/s10955-014-0976-0
Garra, R., Orsingher, E.: Random Flights Related to the Euler-Poisson-Darboux Equation. Markov Processes and Related Fields 22, 87–110 (2016). MR3523980
Getoor, R.K.: First passage times for symmetric stable processes in space. Transactions of the American Mathematical Society 101, 75–90 (1961). MR0137148. https://doi.org/10.2307/1993412
Ghosh, A., Rastegar, R., Roitershtein, A.: On a directionally reinforced random walk. Proceedings of the American Mathematical Society 142, 3269–3283 (2014). MR3223382. https://doi.org/10.1090/S0002-9939-2014-12030-2
Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 4th edn. Academic Press, New York (1980). MR0197789
Huang, Y.: Explicit Barenblatt profiles for fractional porous medium equations. Bulletin of the London Mathematical Society 46, 857–869 (2014). MR3239623. https://doi.org/10.1112/blms/bdu045
Inoue, M.: A Markov process associated with a porous medium equation. Proceedings of the Japan Academy, Series A 60, 157–160 (1989). MR0758056. https://doi.org/10.3792/pjaa.60.157
Inoue, M.: Construction of diffusion processes associated with a porous medium equation. Hiroshima Mathematical Journal 19, 281–297 (1989). MR1027932
Inoue, M.: Derivation of a porous medium equation from many Markovian particles and the propagation of chaos. Hiroshima Mathematical Journal 21, 85–110 (1991). MR1091433
Jourdain, B.: Probabilistic approximation for a porous medium equation. Stochastic Processes and their Applications 89, 81–99 (2000). MR1775228. https://doi.org/10.1016/S0304-4149(00)00014-4
Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New-York (1998). MR0917065. https://doi.org/10.1007/978-1-4684-0302-2
Le Caër, G.: A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths. Journal of Statistical Physics 140, 728–751 (2010). MR2670739. https://doi.org/10.1007/s10955-010-0015-8
Le Caër, G.: A new family of solvable Pearson–Dirichlet random walks. Journal of Statistical Physics 144, 23–45 (2011). MR2820033. https://doi.org/10.1007/s10955-011-0245-4
Letac, G., Piccioni, M.: Dirichlet random walks. Journal of Applied Probability 51, 1081–1099 (2014). MR3301290. https://doi.org/10.1239/jap/1421763329
Philipowski, R.: Interacting diffusions approximating the porous medium equation and propagation of chaos. Stochastic Processes and their Applications 117, 526–538 (2007). MR2305385. https://doi.org/10.1016/j.spa.2006.09.003
Stadje, W.: The exact probability distribution of a two-dimensional random walk. Journal of Statistical Physics 46, 207–216 (1987). MR0887245. https://doi.org/10.1007/BF01010341
Stadje, W.: Exact probability distributions for noncorrelated random walk models. Journal of Statistical Physics 56, 415–435 (1989). MR1009508. https://doi.org/10.1007/BF01044444
Stan, D., del Teso, F., Vazquez, J.L.: Finite and infinite speed of propagation for porous medium equations with fractional pressure. C.R. Acad. Sci. Paris, Ser. I 352, 123–128 (2014). MR3151879. https://doi.org/10.1016/j.crma.2013.12.003
Vazquez, J.L.: The Porous Medium Equation. Mathematical Theory. Oxford Univ. Press, Oxford (2007). MR2286292
Vazquez, J.L.: Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. Journal of the European Mathematical Society 16, 769–803 (2014). MR3191976. https://doi.org/10.4171/JEMS/446