The nonlocal porous medium equation considered in this paper is a degenerate nonlinear evolution equation involving a space pseudo-differential operator of fractional order. This space-fractional equation admits an explicit, nonnegative, compactly supported weak solution representing a probability density function. In this paper we analyze the link between isotropic transport processes, or random flights, and the nonlocal porous medium equation. In particular, we focus our attention on the interpretation of the weak solution of the nonlinear diffusion equation by means of random flights.
A random flight on a plane with non-isotropic displacements at the moments of direction changes is considered. In the case of exponentially distributed flight lengths a Gaussian limit theorem is proved for the position of a particle in the scheme of series when jump lengths and non-isotropic displacements tend to zero. If the flight lengths have a folded Cauchy distribution the limiting distribution of the particle position is a convolution of the circular bivariate Cauchy distribution with a Gaussian law.