Asymptotic behaviour of non-isotropic random walks with heavy tails
Volume 4, Issue 1 (2017), pp. 79–89
Pub. online: 6 April 2017
Type: Research Article
Open Access
Received
24 November 2016
24 November 2016
Revised
9 March 2017
9 March 2017
Accepted
14 March 2017
14 March 2017
Published
6 April 2017
6 April 2017
Abstract
A random flight on a plane with non-isotropic displacements at the moments of direction changes is considered. In the case of exponentially distributed flight lengths a Gaussian limit theorem is proved for the position of a particle in the scheme of series when jump lengths and non-isotropic displacements tend to zero. If the flight lengths have a folded Cauchy distribution the limiting distribution of the particle position is a convolution of the circular bivariate Cauchy distribution with a Gaussian law.
References
Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover (1972). MR0208797
Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943). MR0008130. doi:10.1103/RevModPhys.15.1
Gradshtein, I., Ryzik, I.: Tables of Integrals, Sums, Series and Products. Nauka, Moscow (1971). MR0052590
De Gregorio, A., Orsingher, E.: Flying randomly in Rd with Dirichlet displacements. In: Stochastic Processes Appl., vol. 122, pp. 676–713 (2012). MR2868936. doi:10.1016/j.spa.2011.10.009
Le Caër, G.: A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths. J. Stat. Phys. 140, 728–751 (2010). doi:10.1007/s10955-010-0015-8
Dattoli, G., Chiccoli, C., Lorenzutto, S., Maino, G., Torre, A.: Generalized Bessel function of the Anger type and applications to physical problems. J. Math. Anal. Appl. 184, 201–221 (1994). N. 2. doi:10.1006/jmaa.1994.1194
Feller, W.: An Introduction to Probability Theory and its Applications, v. II. J. Wiley & Sons (1971). MR0270403
Ferguson, T.: A representation of the symmetric bivariate Cauchy distribution. Ann. Math. Stat. 33(4), 1256–1266 (1962). doi:10.1214/aoms/1177704357
Orsingher, E., De Gregorio, A.: Random flights in higher spaces. J. Theor. Probab. 20(4), 769–806 (2007). doi:10.1007/s10959-007-0093-y