Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 4, Issue 1 (2017)
  4. Asymptotic behaviour of non-isotropic ra ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Asymptotic behaviour of non-isotropic random walks with heavy tails
Volume 4, Issue 1 (2017), pp. 79–89
Mark Kelbert   Enzo Orsingher  

Authors

 
Placeholder
https://doi.org/10.15559/17-VMSTA75
Pub. online: 6 April 2017      Type: Research Article      Open accessOpen Access

Received
24 November 2016
Revised
9 March 2017
Accepted
14 March 2017
Published
6 April 2017

Abstract

A random flight on a plane with non-isotropic displacements at the moments of direction changes is considered. In the case of exponentially distributed flight lengths a Gaussian limit theorem is proved for the position of a particle in the scheme of series when jump lengths and non-isotropic displacements tend to zero. If the flight lengths have a folded Cauchy distribution the limiting distribution of the particle position is a convolution of the circular bivariate Cauchy distribution with a Gaussian law.

References

[1] 
Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover (1972). MR0208797
[2] 
Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943). MR0008130. doi:10.1103/RevModPhys.15.1
[3] 
Davydov, Y., Konakov, V.: Random walks in non-homogeneous Poisson environment. In: Panov, V. (ed.) Modern Problems of Stochastic Analysis and Statistics – Festschrift in honor of Valentin Konakov. Springer (2017). In press
[4] 
Gradshtein, I., Ryzik, I.: Tables of Integrals, Sums, Series and Products. Nauka, Moscow (1971). MR0052590
[5] 
De Gregorio, A., Orsingher, E.: Flying randomly in Rd with Dirichlet displacements. In: Stochastic Processes Appl., vol. 122, pp. 676–713 (2012). MR2868936. doi:10.1016/j.spa.2011.10.009
[6] 
Le Caër, G.: A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths. J. Stat. Phys. 140, 728–751 (2010). doi:10.1007/s10955-010-0015-8
[7] 
Dattoli, G., Chiccoli, C., Lorenzutto, S., Maino, G., Torre, A.: Generalized Bessel function of the Anger type and applications to physical problems. J. Math. Anal. Appl. 184, 201–221 (1994). N. 2. doi:10.1006/jmaa.1994.1194
[8] 
Feller, W.: An Introduction to Probability Theory and its Applications, v. II. J. Wiley & Sons (1971). MR0270403
[9] 
Ferguson, T.: A representation of the symmetric bivariate Cauchy distribution. Ann. Math. Stat. 33(4), 1256–1266 (1962). doi:10.1214/aoms/1177704357
[10] 
Orsingher, E., De Gregorio, A.: Random flights in higher spaces. J. Theor. Probab. 20(4), 769–806 (2007). doi:10.1007/s10959-007-0093-y
[11] 
Watson, G.: A Treatise on the Theory of Bessel Functions. Cambridge Univ. Press (1952)

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2017 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Random flights non-Gaussian limit theorem Bessel functions

Metrics
since March 2018
456

Article info
views

502

Full article
views

303

PDF
downloads

190

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy