Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 5, Issue 4 (2018)
  4. Stochastic models associated to a Nonloc ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Stochastic models associated to a Nonlocal Porous Medium Equation
Volume 5, Issue 4 (2018), pp. 457–470
Alessandro De Gregorio ORCID icon link to view author Alessandro De Gregorio details  

Authors

 
Placeholder
https://doi.org/10.15559/18-VMSTA112
Pub. online: 19 September 2018      Type: Research Article      Open accessOpen Access

Received
24 April 2018
Revised
19 July 2018
Accepted
24 August 2018
Published
19 September 2018

Abstract

The nonlocal porous medium equation considered in this paper is a degenerate nonlinear evolution equation involving a space pseudo-differential operator of fractional order. This space-fractional equation admits an explicit, nonnegative, compactly supported weak solution representing a probability density function. In this paper we analyze the link between isotropic transport processes, or random flights, and the nonlocal porous medium equation. In particular, we focus our attention on the interpretation of the weak solution of the nonlinear diffusion equation by means of random flights.

References

[1] 
Benachour, S., Chassaing, P., Roynette, B., Vallois, P.: Processus associés a l’équation des milieux poreux. Annali della Scuola Superiore di Pisa 4, 793–832 (1996). MR1469575
[2] 
Biler, P., Karch, G., Monneau, R.: Nonlinear diffusion of dislocation density and self-similar solutions. Communications in Mathematical Physics 294, 145–168 (2010). MR2575479. https://doi.org/10.1007/s00220-009-0855-8
[3] 
Biler, P., Imbert, C., Karch, G.: Barenblatt profiles for a non local porous medium equation. C.R. Acad. Sci. Paris, Ser. I 349, 641–645 (2011). MR2817383. https://doi.org/10.1016/j.crma.2011.06.003
[4] 
Biler, P., Imbert, C., Karch, G.: The nonlocal porous medium equation: Barenblatt profiles and other weak solutions. Archive for Rational Mechanics and Analysis 215, 497–529 (2015). MR3294409. https://doi.org/10.1007/s00205-014-0786-1
[5] 
Caffarelli, L., Vazquez, J.L.: Nonlinear porous medium flow with fractional potential pressure. Archive for Rational Mechanics and Analysis 202, 537–565 (2011). MR2847534. https://doi.org/10.1007/s00205-011-0420-4
[6] 
Caffarelli, L., Vazquez, J.L.: Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems 29, 1393–1404 (2011). MR2773189. https://doi.org/10.3934/dcds.2011.29.1393
[7] 
De Gregorio, A.: On random flights with non-uniformly distributed directions. Journal of Statistical Physics 147, 382–411 (2012). MR2922773. https://doi.org/10.1007/s10955-012-0471-4
[8] 
De Gregorio, A.: A family of random walks with generalized Dirichlet steps. Journal of Mathematical Physics 55, 023302 (2014). 17 pp. MR3202881. https://doi.org/10.1063/1.4863475
[9] 
De Gregorio, A., Orsingher, E., Sakhno, L.: Motions with finite velocity analyzed with order statistics and differential equations. Theory of Probability and Mathematical Statistics 71, 63–79 (2005). MR2144321. https://doi.org/10.1090/S0094-9000-05-00648-4
[10] 
De Gregorio, A., Orsingher, E.: Flying randomly in ${\mathbb{R}^{d}}$ with Dirichlet displacements. Stochastic Processes and their Applications 122, 676–713 (2012). MR2868936. https://doi.org/10.1016/j.spa.2011.10.009
[11] 
De Gregorio, A., Orsingher, E.: Random flights connecting Porous Medium and Euler-Poisson-Darboux equations (2017). 20 pp. arXiv:1709.07663
[12] 
Ekhaus, M., Seppäläinen, T.: Stochastic dynamics macroscopically governed by the porous medium equation for isothermal flow. Annales Academiæ Scientiarum Fennicæ 21, 309–352 (1996). MR1404089
[13] 
Feng, S., Iscoe, I., Seppäläinen, T.: A microscopic mechanism for the porous medium equation. Stochastic Processes and their Applications 66, 147–182 (1997). MR1440397. https://doi.org/10.1016/S0304-4149(96)00121-4
[14] 
Garra, R., Orsingher, E.: Random flights governed by Klein-Gordon-type partial differential equations. Stochastic Processes and their Applications 124, 2171–2187 (2014). MR3188352. https://doi.org/10.1016/j.spa.2014.02.004
[15] 
Garra, R., Polito, F., Orsingher, E.: Fractional Klein-Gordon equations and related stochastic processes. Journal of Statistical Physics 155, 777–809 (2014). MR3192184. https://doi.org/10.1007/s10955-014-0976-0
[16] 
Garra, R., Orsingher, E.: Random Flights Related to the Euler-Poisson-Darboux Equation. Markov Processes and Related Fields 22, 87–110 (2016). MR3523980
[17] 
Getoor, R.K.: First passage times for symmetric stable processes in space. Transactions of the American Mathematical Society 101, 75–90 (1961). MR0137148. https://doi.org/10.2307/1993412
[18] 
Ghosh, A., Rastegar, R., Roitershtein, A.: On a directionally reinforced random walk. Proceedings of the American Mathematical Society 142, 3269–3283 (2014). MR3223382. https://doi.org/10.1090/S0002-9939-2014-12030-2
[19] 
Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 4th edn. Academic Press, New York (1980). MR0197789
[20] 
Huang, Y.: Explicit Barenblatt profiles for fractional porous medium equations. Bulletin of the London Mathematical Society 46, 857–869 (2014). MR3239623. https://doi.org/10.1112/blms/bdu045
[21] 
Inoue, M.: A Markov process associated with a porous medium equation. Proceedings of the Japan Academy, Series A 60, 157–160 (1989). MR0758056. https://doi.org/10.3792/pjaa.60.157
[22] 
Inoue, M.: Construction of diffusion processes associated with a porous medium equation. Hiroshima Mathematical Journal 19, 281–297 (1989). MR1027932
[23] 
Inoue, M.: Derivation of a porous medium equation from many Markovian particles and the propagation of chaos. Hiroshima Mathematical Journal 21, 85–110 (1991). MR1091433
[24] 
Jourdain, B.: Probabilistic approximation for a porous medium equation. Stochastic Processes and their Applications 89, 81–99 (2000). MR1775228. https://doi.org/10.1016/S0304-4149(00)00014-4
[25] 
Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New-York (1998). MR0917065. https://doi.org/10.1007/978-1-4684-0302-2
[26] 
Le Caër, G.: A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths. Journal of Statistical Physics 140, 728–751 (2010). MR2670739. https://doi.org/10.1007/s10955-010-0015-8
[27] 
Le Caër, G.: A new family of solvable Pearson–Dirichlet random walks. Journal of Statistical Physics 144, 23–45 (2011). MR2820033. https://doi.org/10.1007/s10955-011-0245-4
[28] 
Letac, G., Piccioni, M.: Dirichlet random walks. Journal of Applied Probability 51, 1081–1099 (2014). MR3301290. https://doi.org/10.1239/jap/1421763329
[29] 
Philipowski, R.: Interacting diffusions approximating the porous medium equation and propagation of chaos. Stochastic Processes and their Applications 117, 526–538 (2007). MR2305385. https://doi.org/10.1016/j.spa.2006.09.003
[30] 
Stadje, W.: The exact probability distribution of a two-dimensional random walk. Journal of Statistical Physics 46, 207–216 (1987). MR0887245. https://doi.org/10.1007/BF01010341
[31] 
Stadje, W.: Exact probability distributions for noncorrelated random walk models. Journal of Statistical Physics 56, 415–435 (1989). MR1009508. https://doi.org/10.1007/BF01044444
[32] 
Stan, D., del Teso, F., Vazquez, J.L.: Finite and infinite speed of propagation for porous medium equations with fractional pressure. C.R. Acad. Sci. Paris, Ser. I 352, 123–128 (2014). MR3151879. https://doi.org/10.1016/j.crma.2013.12.003
[33] 
Vazquez, J.L.: The Porous Medium Equation. Mathematical Theory. Oxford Univ. Press, Oxford (2007). MR2286292
[34] 
Vazquez, J.L.: Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. Journal of the European Mathematical Society 16, 769–803 (2014). MR3191976. https://doi.org/10.4171/JEMS/446

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2018 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Anomalous diffusions finite speed of propagation fractional gradient random flights

Metrics
since March 2018
623

Article info
views

444

Full article
views

418

PDF
downloads

157

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy