Option pricing in time-changed Lévy models with compound Poisson jumps        
        
    
        Volume 6, Issue 1 (2019), pp. 81–107
            
    
                    Pub. online: 27 November 2018
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
14 June 2018
                                    14 June 2018
                Revised
3 September 2018
                                    3 September 2018
                Accepted
7 November 2018
                                    7 November 2018
                Published
27 November 2018
                    27 November 2018
Abstract
The problem of European-style option pricing in time-changed Lévy models in the presence of compound Poisson jumps is considered. These jumps relate to sudden large drops in stock prices induced by political or economical hits. As the time-changed Lévy models, the variance-gamma and the normal-inverse Gaussian models are discussed. Exact formulas are given for the price of digital asset-or-nothing call option on extra asset in foreign currency. The prices of simpler options can be derived as corollaries of our results and examples are presented. Various types of dependencies between stock prices are mentioned.
            References
 Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2004). MR2072890. https://doi.org/10.1017/CBO9780511755323
 Barndorff-Nielsen, O.E.: Normal inverse Gaussian distributions and stochastic volatility modelling. Scand. J. Stat. 24(1), 1–13 (1997). MR1436619. https://doi.org/10.1111/1467-9469.00045
 Barndorff-Nielsen, O.E.: Processes of normal inverse Gaussian type. Finance Stoch. 2(1), 41–68 (1998). MR1804664. https://doi.org/10.1007/s007800050032
 Barndorff-Nielsen, O.E., Shiryaev, A.N.: Change of Time and Change of Measure. World Scientific, Singapore (2010). MR2779876. https://doi.org/10.1142/7928
 Bianchi, M.L., Rachev, S.T., Kim, Y.S., Fabozzi, F.J.: Tempered infinitely divisible distributions and processes. Theory Probab. Appl. 55(1), 2–26 (2011). MR2768518. https://doi.org/10.1137/S0040585X97984632
 Cont, R., Tankov, P.: Financial Modeling with Jump Processes. CRC Press, Boca Raton (2004). MR2042661
 Eberlein, E.: Fourier based valuation methods in mathematical finance. In: Benth, F., Kholodnyi, V., Laurence, P. (eds.) Quantitative Energy Finance. Springer, Berlin (2014). MR3184349. https://doi.org/10.1007/978-1-4614-7248-3_3
 Eberlein, E., Papapantoleon, A., Shiryaev, A.N.: Esscher transform and the duality principle for multidimensional semimartingales. Ann. Appl. Probab. 19, 1944–1971 (2009). MR2569813. https://doi.org/10.1214/09-AAP600
 Finlay, R., Seneta, E.: Stationary-increment Student and variance-gamma processes. J. Appl. Probab. 43, 441–453 (2006). MR2248575. https://doi.org/10.1239/jap/1152413733
 Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, New York (1980). MR0669666
 Ivanov, R.V.: Closed form pricing of European options for a family of normal-inverse Gaussian processes. Stoch. Models 29(4), 435–450 (2013). MR3175852. https://doi.org/10.1080/15326349.2013.838509
 Ivanov, R.V.: On risk measuring in the variance-gamma model. Stat. Risk. Model. 35(1–2), 23–33 (2018). MR3739384. https://doi.org/10.1515/strm-2017-0008
 Ivanov, R.V.: Option pricing in the variance-gamma model under the drift jump. Int. J. Theor. Appl. Finance 21(4), 1–19 (2018). MR3817272. https://doi.org/10.1142/S0219024918500188
 Ivanov, R.V., Ano, K.: On exact pricing of fx options in multivariate time-changed Lévy models. Rev. Deriv. Res. 19(3), 201–216 (2016). MR3611537. https://doi.org/10.1007/s11009-015-9461-8
 Ivanov, R.V., Temnov, G.: Truncated moment-generating functions of the nig process and their applications. Stoch. Dyn. 17(5), 1–12 (2017). MR3669415. https://doi.org/10.1142/S0219493717500393
 Kallsen, J., Shiryaev, A.N.: The cumulant process and Esscher’s change of measure. Finance Stoch. 6, 397–428 (2002). MR1932378. https://doi.org/10.1007/s007800200069
 Küchler, U., Tappe, S.: Bilateral gamma distributions and processes in financial mathematics. Stoch. Process. Appl. 118(2), 261–283 (2008). MR2376902. https://doi.org/10.1016/j.spa.2007.04.006
 Küchler, U., Tappe, S.: Tempered stable distributions and processes. Stoch. Process. Appl. 123(12), 4256–4293 (2013). MR3096354. https://doi.org/10.1016/j.spa.2013.06.012
 Linders, D., Stassen, B.: The multivariate variance gamma model: basket option pricing and calibration. Quant. Finance 16(4), 555–572 (2016). MR3473973. https://doi.org/10.1080/14697688.2015.1043934
 Luciano, E., Schoutens, W.: A multivariate jump-driven financial asset model. Quant. Finance 6(5), 385–402 (2016). MR2261218. https://doi.org/10.1080/14697680600806275
 Luciano, E., Semeraro, P.: Multivariate time changes for Lévy asset models: Characterization and calibration. J. Comput. Appl. Math. 233, 1937–1953 (2010). MR2564029. https://doi.org/10.1016/j.cam.2009.08.119
 Luciano, E., Marena, M., Semeraro, P.: Dependence calibration and portfolio fit with factor-based subordinators. Quant. Finance 16(7), 1–16 (2016). MR3516138. https://doi.org/10.1080/14697688.2015.1114661
 Madan, D., Yor, M.: Representing the cgmy and Meixner Lévy processes as time changed Brownian motions. J. Comput. Finance 12(1), 27–47 (2008). MR2504899. https://doi.org/10.21314/JCF.2008.181
 Mozumder, S., Sorwar, G., Dowd, K.: Revisiting variance gamma pricing: An application to S&P500 index options. Int. J. Financ. Eng. 2(2), 1–24 (2015). MR3454654. https://doi.org/10.1142/S242478631550022X
 Rosinski, J.: Tempering stable processes. Stoch. Process. Appl. 117(6), 667–707 (2007). MR2327834. https://doi.org/10.1016/j.spa.2006.10.003
 Rydberg, T.H.: The normal-inverse Gaussian process: simulation and approximation. Stoch. Models 13, 887–910 (2013). MR1482297. https://doi.org/10.1080/15326349708807456
 Seneta, E.: The early years of the variance–gamma process. In: Fu, M.C., Jarrow, R., Yen, J.Y., Elliott, R. (eds.) Advances in Mathematical Finance. Birkhauser, Boston (2007). MR2359359. https://doi.org/10.1007/978-0-8176-4545-8_1
 Shiryaev, A.N.: Essentials of Stochastic Finance: Facts, Models, Theory. World Scientific, Singapore (1999). MR1695318. https://doi.org/10.1142/9789812385192
 Whittaker, E.T., Watson, G.N.: A Course in Modern Analysis, 4th Edition. Cambridge University Press, Cambridge (1990). MR1424469. https://doi.org/10.1017/CBO9780511608759
 Yor, M.: Some remarkable properties of gamma processes. In: Fu, M.C., Jarrow, R., Yen, J.Y., Elliott, R. (eds.) Advances in Mathematical Finance. Birkhauser, Boston (2007). MR2359361. https://doi.org/10.1007/978-0-8176-4545-8_3
 
            