Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 1, Issue 2 (2014)
  4. Heat equation with general stochastic me ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Heat equation with general stochastic measure colored in time
Volume 1, Issue 2 (2014), pp. 129–138
Vadym Radchenko  

Authors

 
Placeholder
https://doi.org/10.15559/14-VMSTA14
Pub. online: 5 December 2014      Type: Research Article      Open accessOpen Access

Received
2 October 2014
Revised
10 November 2014
Accepted
13 November 2014
Published
5 December 2014

Abstract

A stochastic heat equation on $[0,T]\times \mathbb{R}$ driven by a general stochastic measure $d\mu (t)$ is investigated in this paper. For the integrator μ, we assume the σ-additivity in probability only. The existence, uniqueness, and Hölder regularity of the solution are proved.

References

[1] 
Curbera, G., Delgado, O.: Optimal domains for ${L}^{0}$-valued operators via stochastic measures. Positivity 11, 399–416 (2007). MR2336205. doi:10.1007/s11117-007-2071-0
[2] 
Kruse, R., Larsson, S.: Optimal regularity for semilinear stochastic partial differential equations with multiplicative noise. Electron. J. Probab. 17, 65–119 (2012). MR2968672. doi:10.1214/EJP.v17-2240
[3] 
Kwapień, S., Woyczyński, W.A.: Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston (1992). MR1167198. doi:10.1007/978-1-4612-0425-1
[4] 
Mémin, J., Mishura, Y., Valkeila, E.: Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion. Stat. Probab. Lett. 51, 197–206 (2001). MR1822771. doi:10.1016/S0167-7152(00)00157-7
[5] 
Radchenko, V.: Mild solution of the heat equation with a general stochastic measure. Studia Math. 194, 231–251 (2009). MR2539554. doi:10.4064/sm194-3-2
[6] 
Radchenko, V.: Stochastic partial differential equations driven by general stochastic measures. In: Korolyuk, V., Limnios, N., Mishura, Y., Sakhno, L., Shevchenko, G. (eds.) Modern Stochastics and Applications, pp. 143–156. Springer, Cham Heidelberg (2014). MR3236073. doi:10.1007/978-3-319-03512-3_9
[7] 
Radchenko, V., Zähle, M.: Heat equation with a general stochastic measure on nested fractals. Stat. Probab. Lett. 82, 699–704 (2012). MR2887489. doi:10.1016/j.spl.2011.12.013
[8] 
Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman and Hall, London (1994). MR1280932
[9] 
Tudor, C.A.: Solutions to the linear stochastic heat and wave equation. In: Analysis of Variations for Self-similar Processes. Probability and Its Applications, pp. 27–75. Springer, Cham Heidelberg (2013). doi:10.1007/978-3-319-00936-0_2
[10] 
Walsh, J.B.: An Introduction to Stochastic Partial Differential Equations. Lect. Notes Math., vol. 1180, pp. 265–439 (1986). MR0876085. doi:10.1007/BFb0074920

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2014 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Stochastic measure stochastic heat equation mild solution Hölder regularity Besov space

MSC2010
60H15 60G17 60G57

Metrics
since March 2018
489

Article info
views

417

Full article
views

317

PDF
downloads

168

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy