A pure-jump mean-reverting short rate model        
        
    
        Volume 7, Issue 2 (2020), pp. 113–134
            
    
                    Pub. online: 20 April 2020
                    
        Type: Research Article
            
                
            
Open Access
        
            
    
                Received
23 April 2019
                                    23 April 2019
                Revised
27 March 2020
                                    27 March 2020
                Accepted
27 March 2020
                                    27 March 2020
                Published
20 April 2020
                    20 April 2020
Abstract
A new multi-factor short rate model is presented which is bounded from below by a real-valued function of time. The mean-reverting short rate process is modeled by a sum of pure-jump Ornstein–Uhlenbeck processes such that the related bond prices possess affine representations. Also the dynamics of the associated instantaneous forward rate is provided and a condition is derived under which the model can be market-consistently calibrated. The analytical tractability of this model is illustrated by the derivation of an explicit plain vanilla option price formula. With view on practical applications, suitable probability distributions are proposed for the driving jump processes. The paper is concluded by presenting a post-crisis extension of the proposed short and forward rate model.
            References
 Benth, F., Kallsen, J., Meyer-Brandis, T.: A non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing. Appl. Math. Finance 14(2), 153–169 (2006). MR2323278. https://doi.org/10.1080/13504860600725031
 Benth, F., Saltyte-Benth, J., Koekebakker, S.: Stochastic Modeling of Electricity and Related Markets, 1st edn. World Scientific, (2008). MR2416686. https://doi.org/10.1142/9789812812315
 Björk, T., Kabanov, Y., Runggaldier, W.: Bond market structure in the presence of marked point processes. Math. Finance 7, 211–239 (1997). MR1446647. https://doi.org/10.1111/1467-9965.00031
 Brace, A., Gatarek, D., Musiela, M.: The market model of interest rate dynamics. Math. Finance 7, 127–155 (1997). MR1446645. https://doi.org/10.1111/1467-9965.00028
 Brigo, D., Mercurio, F.: A deterministic-shift extension of analytically-tractable and time-homogeneous short-rate models. Finance Stoch. 5(3), 369–387 (2001). MR1849427. https://doi.org/10.1007/PL00013541
 Brigo, D., Mercurio, F.: Interest Rate Models – Theory and Practice, 1st edn. Springer, (2001). MR1846525. https://doi.org/10.1007/978-3-662-04553-4
 Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Finance 2(4), 61–73 (1999). https://doi.org/10.21314/JCF.1999.043
 Cont, R., Tankov, P.: Financial Modeling with Jump Processes, 1st edn. Chapman & Hall/CRC, (2004). MR2042661
 Cox, J., Ingersoll, J., Ross, S.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985). MR0785475. https://doi.org/10.2307/1911242
 Crépey, S., Grbac, Z., Ngor, N., Skovmand, D.: A Lévy HJM multiple-curve model with application to CVA computation. Quant. Finance 15(3), 401–419 (2015). MR3313198. https://doi.org/10.1080/14697688.2014.942232
 Crépey, S., Grbac, Z., Nguyen, H.: A multiple-curve HJM model of interbank risk. Math. Financ. Econ. 6, 155–190 (2013). MR2966729. https://doi.org/10.1007/s11579-012-0083-4
 Cuchiero, C., Fontana, C., Gnoatto, A.: A General HJM Framework for Multiple Yield Curve Modeling. Finance Stoch. 20(2), 267–320 (2016). MR3479323. https://doi.org/10.1007/s00780-016-0291-5
 Cuchiero, C., Fontana, C., Gnoatto, A.: Affine Multiple Yield Curve Models. Math. Finance 29(2), 568–611 (2019). preprint: arXiv:1603.00527v2. MR3925431. https://doi.org/10.1111/mafi.12183
 Di Nunno, G., Øksendal, B., Proske, F.: Malliavin Calculus for Lévy Processes with Applications to Finance, 1st edn. Springer, (2009). MR2460554. https://doi.org/10.1007/978-3-540-78572-9
 Duffie, D., Filipovic, D., Schachermayer, W.: Affine Processes and Applications in Finance. Ann. Appl. Probab. 13, 984–1053 (2003). MR1994043. https://doi.org/10.1214/aoap/1060202833
 Eberlein, E., Gerhart, C., Grbac, Z.: Multiple curve Lévy forward price model allowing for negative interest rates. Mathematical Finance (2019). forthcoming, preprint: arXiv:1805.02605v1. https://doi.org/10.1007/978-3-030-26106-1
 Eberlein, E., Kluge, W.: Exact pricing formulae for caps and swaptions in a Lévy term structure model. J. Comput. Finance 9(2), 99–125 (2006). MR2359367. https://doi.org/10.21314/JCF.2005.158
 Eberlein, E., Kluge, W.: Valuation of floating range notes in Lévy term structure models. Math. Finance 16, 237–254 (2006). MR2212265. https://doi.org/10.1111/j.1467-9965.2006.00270.x
 Eberlein, E., Kluge, W., Papapantoleon, A.: Symmetries in Lévy Term Structure Models. Int. J. Theor. Appl. Finance 9(6), 967–986 (2006). MR2260054. https://doi.org/10.1142/S0219024906003809
 Filipovic, D.: Term-Structure Models. Springer Finance, Springer, (2009). MR2553163. https://doi.org/10.1007/978-3-540-68015-4
 Filipovic, D., Trolle, A.: The Term Structure of Interbank Risk. J. Financ. Econ. 109(3), 707–733 (2013). https://doi.org/10.1016/j.jfineco.2013.03.014
 Gallitschke, J., Seifried, S., Seifried, F.: Post-crisis Interest Rates: Xibor Mechanics and Basis Spreads. J. Bank. Finance 78, 142–152 (2017). https://doi.org/10.1016/j.jbankfin.2017.01.002
 Grasselli, M., Miglietta, G.: A Flexible Spot Multiple-curve Model. Quant. Finance 6(10), 1465–1477 (2016). MR3564921. https://doi.org/10.1080/14697688.2015.1108521
 Grbac, Z., Papapantoleon, A., Schoenmakers, J., Skovmand, D.: Affine LIBOR Models with Multiple Curves: Theory, Examples and Calibration. SIAM J. Financ. Math. 6(1), 984–1025 (2015). MR3413586. https://doi.org/10.1137/15M1011731
 Grbac, Z., Runggaldier, W.: Interest Rate Modeling: Post-Crisis Challenges and Approaches, Springer Briefs in Quantitative Finance, 1st edn. Springer, (2015). MR3467166. https://doi.org/10.1007/978-3-319-25385-5
 Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica 60, 77–105 (1992). https://doi.org/10.2307/2951677
 Hess, M.: Pricing Energy, Weather and Emission Derivatives under Future Information. PhD Dissertation, University Duisburg-Essen, Germany (2013). http://duepublico.uni-duisburg-essen.de/servlets/DocumentServlet?id=31060
 Hull, J., White, A.: Pricing interest-rate-derivative securities. Rev. Financ. Stud. 3(4), 573–592 (1990). https://doi.org/10.1093/rfs/3.4.573
 Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, (2003). MR1943877. https://doi.org/10.1007/978-3-662-05265-5
 Keller-Ressel, M., Papapantoleon, A., Teichmann, J.: The Affine LIBOR Models. Math. Finance 23(4), 627–658 (2013). MR3094715. https://doi.org/10.1111/j.1467-9965.2012.00531.x
 Morino, L., Runggaldier, W.: On multicurve models for the term structure. In: Nonlinear Economic Dynamics and Financial Modeling, pp. 275–290. Springer, (2014). MR3329961
 Nguyen, T., Seifried, F.: The Multi-curve Potential Model. Int. J. Theor. Appl. Finance 18(7), 1550049 (2015). MR3423186. https://doi.org/10.1142/S0219024915500491
 Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, (2005). MR2020294
 Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge studies in advanced mathematics, vol. 68 (1999). MR1739520
 Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5(2), 177–188 (1977). https://doi.org/10.1016/0304-405X(77)90016-2