Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 7, Issue 2 (2020)
  4. A pure-jump mean-reverting short rate mo ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

A pure-jump mean-reverting short rate model
Volume 7, Issue 2 (2020), pp. 113–134
Markus Hess  

Authors

 
Placeholder
https://doi.org/10.15559/20-VMSTA152
Pub. online: 20 April 2020      Type: Research Article      Open accessOpen Access

Received
23 April 2019
Revised
27 March 2020
Accepted
27 March 2020
Published
20 April 2020

Abstract

A new multi-factor short rate model is presented which is bounded from below by a real-valued function of time. The mean-reverting short rate process is modeled by a sum of pure-jump Ornstein–Uhlenbeck processes such that the related bond prices possess affine representations. Also the dynamics of the associated instantaneous forward rate is provided and a condition is derived under which the model can be market-consistently calibrated. The analytical tractability of this model is illustrated by the derivation of an explicit plain vanilla option price formula. With view on practical applications, suitable probability distributions are proposed for the driving jump processes. The paper is concluded by presenting a post-crisis extension of the proposed short and forward rate model.

References

[1] 
Antonov, A., Konikov, M., Spector, M.: The free boundary SABR: natural extension to negative rates. Risk Magazine (September 2015).
[2] 
Benth, F., Kallsen, J., Meyer-Brandis, T.: A non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing. Appl. Math. Finance 14(2), 153–169 (2006). MR2323278. https://doi.org/10.1080/13504860600725031
[3] 
Benth, F., Saltyte-Benth, J., Koekebakker, S.: Stochastic Modeling of Electricity and Related Markets, 1st edn. World Scientific, (2008). MR2416686. https://doi.org/10.1142/9789812812315
[4] 
Björk, T., Kabanov, Y., Runggaldier, W.: Bond market structure in the presence of marked point processes. Math. Finance 7, 211–239 (1997). MR1446647. https://doi.org/10.1111/1467-9965.00031
[5] 
Brace, A., Gatarek, D., Musiela, M.: The market model of interest rate dynamics. Math. Finance 7, 127–155 (1997). MR1446645. https://doi.org/10.1111/1467-9965.00028
[6] 
Brigo, D., Mercurio, F.: A deterministic-shift extension of analytically-tractable and time-homogeneous short-rate models. Finance Stoch. 5(3), 369–387 (2001). MR1849427. https://doi.org/10.1007/PL00013541
[7] 
Brigo, D., Mercurio, F.: Interest Rate Models – Theory and Practice, 1st edn. Springer, (2001). MR1846525. https://doi.org/10.1007/978-3-662-04553-4
[8] 
Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Finance 2(4), 61–73 (1999). https://doi.org/10.21314/JCF.1999.043
[9] 
Cont, R., Tankov, P.: Financial Modeling with Jump Processes, 1st edn. Chapman & Hall/CRC, (2004). MR2042661
[10] 
Cox, J., Ingersoll, J., Ross, S.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985). MR0785475. https://doi.org/10.2307/1911242
[11] 
Crépey, S., Grbac, Z., Ngor, N., Skovmand, D.: A Lévy HJM multiple-curve model with application to CVA computation. Quant. Finance 15(3), 401–419 (2015). MR3313198. https://doi.org/10.1080/14697688.2014.942232
[12] 
Crépey, S., Grbac, Z., Nguyen, H.: A multiple-curve HJM model of interbank risk. Math. Financ. Econ. 6, 155–190 (2013). MR2966729. https://doi.org/10.1007/s11579-012-0083-4
[13] 
Cuchiero, C., Fontana, C., Gnoatto, A.: A General HJM Framework for Multiple Yield Curve Modeling. Finance Stoch. 20(2), 267–320 (2016). MR3479323. https://doi.org/10.1007/s00780-016-0291-5
[14] 
Cuchiero, C., Fontana, C., Gnoatto, A.: Affine Multiple Yield Curve Models. Math. Finance 29(2), 568–611 (2019). preprint: arXiv:1603.00527v2. MR3925431. https://doi.org/10.1111/mafi.12183
[15] 
Di Nunno, G., Øksendal, B., Proske, F.: Malliavin Calculus for Lévy Processes with Applications to Finance, 1st edn. Springer, (2009). MR2460554. https://doi.org/10.1007/978-3-540-78572-9
[16] 
Duffie, D., Filipovic, D., Schachermayer, W.: Affine Processes and Applications in Finance. Ann. Appl. Probab. 13, 984–1053 (2003). MR1994043. https://doi.org/10.1214/aoap/1060202833
[17] 
Eberlein, E., Gerhart, C., Grbac, Z.: Multiple curve Lévy forward price model allowing for negative interest rates. Mathematical Finance (2019). forthcoming, preprint: arXiv:1805.02605v1. https://doi.org/10.1007/978-3-030-26106-1
[18] 
Eberlein, E., Kluge, W.: Exact pricing formulae for caps and swaptions in a Lévy term structure model. J. Comput. Finance 9(2), 99–125 (2006). MR2359367. https://doi.org/10.21314/JCF.2005.158
[19] 
Eberlein, E., Kluge, W.: Valuation of floating range notes in Lévy term structure models. Math. Finance 16, 237–254 (2006). MR2212265. https://doi.org/10.1111/j.1467-9965.2006.00270.x
[20] 
Eberlein, E., Kluge, W., Papapantoleon, A.: Symmetries in Lévy Term Structure Models. Int. J. Theor. Appl. Finance 9(6), 967–986 (2006). MR2260054. https://doi.org/10.1142/S0219024906003809
[21] 
Filipovic, D.: Term-Structure Models. Springer Finance, Springer, (2009). MR2553163. https://doi.org/10.1007/978-3-540-68015-4
[22] 
Filipovic, D., Trolle, A.: The Term Structure of Interbank Risk. J. Financ. Econ. 109(3), 707–733 (2013). https://doi.org/10.1016/j.jfineco.2013.03.014
[23] 
Gallitschke, J., Seifried, S., Seifried, F.: Post-crisis Interest Rates: Xibor Mechanics and Basis Spreads. J. Bank. Finance 78, 142–152 (2017). https://doi.org/10.1016/j.jbankfin.2017.01.002
[24] 
Grasselli, M., Miglietta, G.: A Flexible Spot Multiple-curve Model. Quant. Finance 6(10), 1465–1477 (2016). MR3564921. https://doi.org/10.1080/14697688.2015.1108521
[25] 
Grbac, Z., Papapantoleon, A., Schoenmakers, J., Skovmand, D.: Affine LIBOR Models with Multiple Curves: Theory, Examples and Calibration. SIAM J. Financ. Math. 6(1), 984–1025 (2015). MR3413586. https://doi.org/10.1137/15M1011731
[26] 
Grbac, Z., Runggaldier, W.: Interest Rate Modeling: Post-Crisis Challenges and Approaches, Springer Briefs in Quantitative Finance, 1st edn. Springer, (2015). MR3467166. https://doi.org/10.1007/978-3-319-25385-5
[27] 
Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica 60, 77–105 (1992). https://doi.org/10.2307/2951677
[28] 
Hess, M.: Pricing Energy, Weather and Emission Derivatives under Future Information. PhD Dissertation, University Duisburg-Essen, Germany (2013). http://duepublico.uni-duisburg-essen.de/servlets/DocumentServlet?id=31060
[29] 
Hull, J., White, A.: Pricing interest-rate-derivative securities. Rev. Financ. Stud. 3(4), 573–592 (1990). https://doi.org/10.1093/rfs/3.4.573
[30] 
Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, (2003). MR1943877. https://doi.org/10.1007/978-3-662-05265-5
[31] 
Keller-Ressel, M., Papapantoleon, A., Teichmann, J.: The Affine LIBOR Models. Math. Finance 23(4), 627–658 (2013). MR3094715. https://doi.org/10.1111/j.1467-9965.2012.00531.x
[32] 
Mercurio, F.: A LIBOR Market Model with a Stochastic Basis, Risk, pp. 96–101 (December 2013)
[33] 
Morino, L., Runggaldier, W.: On multicurve models for the term structure. In: Nonlinear Economic Dynamics and Financial Modeling, pp. 275–290. Springer, (2014). MR3329961
[34] 
Nguyen, T., Seifried, F.: The Multi-curve Potential Model. Int. J. Theor. Appl. Finance 18(7), 1550049 (2015). MR3423186. https://doi.org/10.1142/S0219024915500491
[35] 
Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, (2005). MR2020294
[36] 
Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge studies in advanced mathematics, vol. 68 (1999). MR1739520
[37] 
Schoutens, W.: Lévy Processes in Finance: Pricing Financial Derivatives. John Wiley & Sons, Ltd., (2003)
[38] 
Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5(2), 177–188 (1977). https://doi.org/10.1016/0304-405X(77)90016-2

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2020 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Short rate forward rate zero-coupon bond option pricing market-consistent calibration post-crisis model Lévy process multi-factor model Ornstein–Uhlenbeck process stochastic differential equation

MSC2010
91G30 60G51 60H10 60H30 91B30 91B70

JEL
G12 D52

Metrics
since March 2018
839

Article info
views

568

Full article
views

888

PDF
downloads

143

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy