Ergodic properties of the solution to a fractional stochastic heat equation, with an application to diffusion parameter estimation
Volume 7, Issue 3 (2020), pp. 339–356
Pub. online: 18 September 2020
Type: Research Article
Open Access
Received
11 May 2020
11 May 2020
Revised
2 August 2020
2 August 2020
Accepted
11 September 2020
11 September 2020
Published
18 September 2020
18 September 2020
Abstract
The paper deals with a stochastic heat equation driven by an additive fractional Brownian space-only noise. We prove that a solution to this equation is a stationary and ergodic Gaussian process. These results enable us to construct a strongly consistent estimator of the diffusion parameter.
References
Adler, R.J., Müller, P. (eds.): Stochastic Modelling in Physical Oceanography. Progress in Probability, vol. 39, p. 467. Birkhäuser Boston, Inc., Boston, MA (1996). MR1383868
Bally, V., Gyöngy, I., Pardoux, E.: White noise driven parabolic SPDEs with measurable drift. J. Funct. Anal. 120(2), 484–510 (1994). MR1266318. https://doi.org/10.1006/jfan.1994.1040
Berzin, C., Latour, A., León, J.R.: Inference on the Hurst Parameter and the Variance of Diffusions Driven by Fractional Brownian Motion. Lecture Notes in Statistics, vol. 216. Springer, Cham (2014). MR3289986. https://doi.org/10.1007/978-3-319-07875-5
Bibinger, M., Trabs, M.: On central limit theorems for power variations of the solution to the stochastic heat equation. In: Stochastic Models, Statistics and Their Applications. Springer Proc. Math. Stat., vol. 294, pp. 69–84. Springer (2019). MR4043170
Bibinger, M., Trabs, M.: Volatility estimation for stochastic PDEs using high-frequency observations. Stochastic Process. Appl. 130(5), 3005–3052 (2020). MR4080737. https://doi.org/10.1016/j.spa.2019.09.002
Björk, T.: A geometric view of interest rate theory. In: Option Pricing, Interest Rates and Risk Management. Handb. Math. Finance, pp. 241–277. Cambridge Univ. Press, Cambridge (2001). MR1848554. https://doi.org/10.1017/CBO9780511569708.008
Carmona, R., Nualart, D.: Random nonlinear wave equations: smoothness of the solutions. Probab. Theory Related Fields 79(4), 469–508 (1988). MR0966173. https://doi.org/10.1007/BF00318783
Cheridito, P., Kawaguchi, H., Maejima, M.: Fractional Ornstein–Uhlenbeck processes. Electron. J. Probab. 8, 3–14 (2003). MR1961165. https://doi.org/10.1214/EJP.v8-125
Chong, C.: High-frequency analysis of parabolic stochastic PDEs. Ann. Statist. 48(2), 1143–1167 (2020). doi:10.1214/19-AOS1841. MR4102691. https://doi.org/10.1214/19-AOS1841
Chow, P.-L.: Stochastic Partial Differential Equations. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, p. 281. Chapman & Hall/CRC, Boca Raton, FL (2007). MR2295103
Cialenco, I., Kim, H.-J.: Parametric estimation for a parabolic linear SPDE model based on sampled data. arXiv preprint arXiv:2003.08920 (2020).
Cialenco, I.: Statistical inference for SPDEs: an overview. Stat. Inference Stoch. Process. 21(2), 309–329 (2018). MR3824970. https://doi.org/10.1007/s11203-018-9177-9
Cialenco, I., Huang, Y.: A note on parameter estimation for discretely sampled SPDEs. Stoch. Dyn. 20(3), 2050016 (2020). MR4101083. https://doi.org/10.1142/S0219493720500161
Cialenco, I., Kim, H.-J., Lototsky, S.V.: Statistical analysis of some evolution equations driven by space-only noise. Stat. Inference Stoch. Process. 23(1), 83–103 (2020). MR4072253. https://doi.org/10.1007/s11203-019-09205-0
Conus, D., Dalang, R.C.: The non-linear stochastic wave equation in high dimensions. Electron. J. Probab. 13, 22–629670 (2008). MR2399293. https://doi.org/10.1214/EJP.v13-500
Dalang, R.C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s. Electron. J. Probab. 4, 6–29 (1999). MR1684157. https://doi.org/10.1214/EJP.v4-43
Dawson, D.A., Salehi, H.: Spatially homogeneous random evolutions. J. Multivariate Anal. 10(2), 141–180 (1980). MR0575923. https://doi.org/10.1016/0047-259X(80)90012-3
Geissert, M., Kovács, M., Larsson, S.: Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise. BIT 49(2), 343–356 (2009). MR2507605. https://doi.org/10.1007/s10543-009-0227-y
Gubinelli, M., Lejay, A., Tindel, S.: Young integrals and SPDEs. Potential Anal. 25(4), 307–326 (2006). MR2255351. https://doi.org/10.1007/s11118-006-9013-5
Gyöngy, I.: Approximations of stochastic partial differential equations. In: Stochastic Partial Differential Equations and Applications (Trento, 2002). Lecture Notes in Pure and Appl. Math., vol. 227, pp. 287–307. Dekker, New York (2002). MR1919514
Hu, Y., Nualart, D.: Stochastic heat equation driven by fractional noise and local time. Probab. Theory Related Fields 143(1-2), 285–328 (2009). MR2449130. https://doi.org/10.1007/s00440-007-0127-5
Imkeller, P.: Energy balance models—viewed from stochastic dynamics. In: Stochastic Climate Models (Chorin, 1999). Progr. Probab., vol. 49, pp. 213–240. Birkhäuser, Basel (2001). MR1948298
Kaino, Y., Uchida, M.: Parametric estimation for a parabolic linear SPDE model based on discrete observations. Journal of Statistical Planning and Inference (2020). https://doi.org/10.1016/j.jspi.2020.05.004
Kovács, M., Larsson, S., Lindgren, F.: Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise. Numer. Algorithms 53(2-3), 309–320 (2010). MR2600932. https://doi.org/10.1007/s11075-009-9281-4
Kubilius, K., Mishura, Y., Ralchenko, K.: Parameter Estimation in Fractional Diffusion Models. Bocconi & Springer Series, vol. 8. Bocconi University Press, [Milan]; Springer, Cham (2017). MR3752152. https://doi.org/10.1007/978-3-319-71030-3
Lototsky, S.V., Rozovskii, B.L.: Stochastic partial differential equations driven by purely spatial noise. SIAM J. Math. Anal. 41(4), 1295–1322 (2009). MR2540267. https://doi.org/10.1137/070698440
Mahdi Khalil, Z., Tudor, C.: Estimation of the drift parameter for the fractional stochastic heat equation via power variation. Mod. Stoch. Theory Appl. 6(4), 397–417 (2019). MR4047392
Markussen, B.: Likelihood inference for a discretely observed stochastic partial differential equation. Bernoulli 9(5), 745–762 (2003). MR2047684. https://doi.org/10.3150/bj/1066418876
Maslowski, B., Nualart, D.: Evolution equations driven by a fractional Brownian motion. J. Funct. Anal. 202(1), 277–305 (2003). MR1994773. https://doi.org/10.1016/S0022-1236(02)00065-4
Millet, A., Sanz-Solé, M.: A stochastic wave equation in two space dimension: smoothness of the law. Ann. Probab. 27(2), 803–844 (1999). MR1698971. https://doi.org/10.1214/aop/1022677387
Mishura, Y.S.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Mathematics, vol. 1929. Springer (2008). MR2378138. https://doi.org/10.1007/978-3-540-75873-0
Pospíšil, J., Tribe, R.: Parameter estimates and exact variations for stochastic heat equations driven by space-time white noise. Stoch. Anal. Appl. 25(3), 593–611 (2007). MR2321899. https://doi.org/10.1080/07362990701282849
Quer-Sardanyons, L., Tindel, S.: The 1-d stochastic wave equation driven by a fractional Brownian sheet. Stochastic Process. Appl. 117(10), 1448–1472 (2007). MR2353035. https://doi.org/10.1016/j.spa.2007.01.009
Ralchenko, K., Shevchenko, G.: Existence and uniqueness of mild solution to fractional stochastic heat equation. Mod. Stoch. Theory Appl. 6(1), 57–79 (2019). MR3935427. https://doi.org/10.15559/18-vmsta122
Tindel, S., Tudor, C.A., Viens, F.: Stochastic evolution equations with fractional Brownian motion. Probab. Theory Related Fields 127(2), 186–204 (2003). MR2013981. https://doi.org/10.1007/s00440-003-0282-2
Tudor, C.A.: Analysis of Variations for Self-similar Processes. Probability and its Applications (New York). Springer (2013). MR3112799. https://doi.org/10.1007/978-3-319-00936-0
Walsh, J.B.: An introduction to stochastic partial differential equations. In: École D’été de Probabilités de Saint-Flour, XIV—1984. Lecture Notes in Math., vol. 1180, pp. 265–439. Springer (1986). MR0876085. https://doi.org/10.1007/BFb0074920
Young, L.C.: An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67(1), 251–282 (1936). MR1555421. https://doi.org/10.1007/BF02401743
Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields 111(3), 333–374 (1998). MR1640795. https://doi.org/10.1007/s004400050171