Asymptotic normality of modified LS estimator for mixture of nonlinear regressions
Volume 7, Issue 4 (2020), pp. 435–448
Pub. online: 8 December 2020
Type: Research Article
Open Access
Received
21 August 2020
21 August 2020
Revised
8 November 2020
8 November 2020
Accepted
16 November 2020
16 November 2020
Published
8 December 2020
8 December 2020
Abstract
We consider a mixture with varying concentrations in which each component is described by a nonlinear regression model. A modified least squares estimator is used to estimate the regressions parameters. Asymptotic normality of the derived estimators is demonstrated. This result is applied to confidence sets construction. Performance of the confidence sets is assessed by simulations.
References
Autin, F., Pouet, Ch.: Test on the components of mixture densities. Stat. Risk. Model. 28(4), 389–410 (2011). MR2877572. https://doi.org/10.1524/strm.2011.1065
Borovkov, A.A.: Mathematical statistics. Gordon and Breach Science Publishers, Amsterdam (1998). MR1712750
Faria, S., Soromenho, G.: Fitting mixtures of linear regressions. J. Stat. Comput. Simul. 80(2), 201–225 (2010). https://doi.org/10.1080/00949650802590261
Grün, B., Friedrich, L.: Fitting finite mixtures of linear regression models with varying & fixed effects in R. In: Rizzi, A., Vichi, M. (eds.) Compstat 2006 – Proceedings in Computational Statistics, pp. 853–860. Physica Verlag, Heidelberg, Germany (2006). MR2173118
Liubashenko, D., Maiboroda, R.: Linear regression by observations from mixture with varying concentrations. Mod. Stoch. Theory Appl. 2(4), 343–353 (2015). MR3456142. https://doi.org/10.15559/15-VMSTA41
Maiboroda, R., Sugakova, O.: Jackknife covariance matrix estimation for observations from mixture. Mod. Stoch. Theory Appl. 6(4), 495–513 (2019). MR4047396. https://doi.org/10.15559/19-vmsta145
Maiboroda, R., Kubaichuk, O.: Asymptotic normality of improved weighted empirical distribution functions. Theory Probab. Math. Stat. 69, 95–102 (2004). MR2110908. https://doi.org/10.1090/S0094-9000-05-00617-4
Maiboroda, R., Sugakova, O.: Statistics of mixtures with varying concentrations with application to DNA microarray data analysis. J. Nonparametr. Stat. 24(1), 201–205 (2012). MR2885834. https://doi.org/10.1080/10485252.2011.630076
Maiboroda, R.E., Sugakova, O.V., Doronin, A.V.: Generalized estimating equations for mixtures with varying concentrations. Can. J. Stat. 41(2), 217–236 (2013). MR3061876. https://doi.org/10.1002/cjs.11170
Masiuk, S., Kukush, A., Shklyar, S., Chepurny, M., Likhtarov, I. (eds.): Radiation Risk Estimation: Based on Measurement Error Models, 2nd edn. de Gruyter series in Mathematics and Life (2017). MR3726857
McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions, 2nd edn. Wiley (2008). MR2392878. https://doi.org/10.1002/9780470191613
Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Wiley (2003). MR0986070. https://doi.org/10.1002/0471725315
Shao, J.: Mathematical statistics. Springer, New York (1998). MR1670883
Shao, J., Tu, D.: The Jackknife and Bootstrap. Springer, NY (1995). MR1351010. https://doi.org/10.1007/978-1-4612-0795-5
Titterington, D.M., Smith, A.F., Makov, U.E.: Analysis of Finite Mixture Distributions. Wiley, New York (1985). MR0838090