A stochastic parabolic equation on $[0,T]\times \mathbb{R}$ driven by a general stochastic measure is considered. The averaging principle for the equation is established. The convergence rate is compared with other results on related topics.
Averaging principle for the wave equation driven by a stochastic measure
A stochastic heat equation on $[0,T]\times B$, where B is a bounded domain, is considered. The equation is driven by a general stochastic measure, for which only σ-additivity in probability is assumed. The existence, uniqueness and Hölder regularity of the solution are proved.
The class of one-dimensional equations driven by a stochastic measure μ is studied. For μ only σ-additivity in probability is assumed. This class of equations includes the Burgers equation and the heat equation. The existence and uniqueness of the solution are proved, and the averaging principle for the equation is studied.
The Burgers-type equation driven by a stochastic measure
The stochastic transport equation is considered where the randomness is given by a symmetric integral with respect to a stochastic measure. For a stochastic measure, only σ-additivity in probability and continuity of paths is assumed. Existence and uniqueness of a weak solution to the equation are proved.