Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 7, Issue 4 (2020)
  4. Averaging principle for a stochastic cab ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Averaging principle for a stochastic cable equation
Volume 7, Issue 4 (2020), pp. 449–467
Iryna Bodnarchuk ORCID icon link to view author Iryna Bodnarchuk details  

Authors

 
Placeholder
https://doi.org/10.15559/20-VMSTA168
Pub. online: 21 December 2020      Type: Research Article      Open accessOpen Access

Received
5 October 2020
Revised
22 November 2020
Accepted
1 December 2020
Published
21 December 2020

Abstract

We consider the cable equation in the mild form driven by a general stochastic measure. The averaging principle for the equation is established. The rate of convergence is estimated. The regularity of the mild solution is also studied. The orders in time and space variables in the Holder condition for the solution are improved in comparison with previous results in the literature on this topic.

1 Introduction

Averaging methods are important for describing and investigating the asymptotic behavior of dynamical systems. Therefore, the theory of the averaging principle for stochastic differential equations is a fascinating modern topic and many mathematicians work quite actively within this field. For instance, a weak order in averaging for wave equations with ${L^{2}}$-valued Wiener processes is studied in [14]. Bao et al. [3] considered two-time-scale equations with α-stable noises. Strong and weak orders in averaging for stochastic partial differential equations with Wiener processes are given in [10, 11, 13].
The averaging principle for fractional differential equations driven by Lévy noise is established by Shen et al. [31]. Wang and Xu [34] investigated the stochastic averaging method for neutral stochastic delay equations driven by fractional Brownian motion with Hurst parameter $H\in (1/2,1)$. Other interesting examples of studying of averaging for stochastic differential equations can be found in papers [1, 12, 15, 18].
The averaging principle for equations driven by general stochastic measures is considered in [6, 22, 23, 26, 30].
Our aim here is to establish the averaging principle for the cable equation driven by stochastic measure studied in [25]. For this purpose we also improve the orders of the Hölder condition for the mild solution with respect to space and time variables obtained in [25, Theorem 5.1] (see Theorem 1 below).
Properties of the mild solutions to stochastic partial differential equations are studied in a number of papers. In particular, the existence and uniqueness of a solution for the class of non-autonomous parabolic stochastic partial differential equations defined on a bounded open subset $D\subset {\mathbb{R}^{d}}$ and driven by an ${L^{2}}(D)$-valued fractional Brownian motion with the Hurst index $H>1/2$ are proved in [28]. In [2] the ergodic property of the solution to a fractional stochastic heat equation is established. Wave equations with general stochastic measures and α-stable distributions are investigated in the papers [5, 7, 8, 24] and [20, 29, 19], respectively.
Let ${L_{0}}(\Omega ,\mathcal{F},\mathsf{P})$ be the set of all real-valued random variables defined on a complete probability space $(\Omega ,\mathcal{F},\mathsf{P})$, $\mathsf{X}$ be an arbitrary set and $\mathcal{B}(\mathsf{X})$ be a σ-algebra of Borel subsets of $\mathsf{X}$. Let μ be a stochastic measure on $\mathcal{B}(\mathsf{X})$, i.e. a σ-additive mapping $\mu :\hspace{0.1667em}\mathcal{B}(\mathsf{X})\to {L_{0}}(\Omega ,\mathcal{F},\mathsf{P})$. Such μ is also called a general stochastic measure (see, for example, [17, Section 7]). Examples of stochastic measures can be found in [17, 21, 30].
Consider the mild solution to the following equation:
(1)
\[ \left\{\begin{array}{l}\frac{\partial {u_{\varepsilon }}(t,x)}{\partial t}=\frac{{\partial ^{2}}{u_{\varepsilon }}(t,x)}{\partial {x^{2}}}-{u_{\varepsilon }}(t,x)+\sigma (t/\varepsilon ,x)\hspace{0.1667em}\dot{\mu }(x),\\ {} {u_{\varepsilon }}(0,x)={u_{0}}(x),\hspace{1em}\frac{\partial {u_{\varepsilon }}(t,0)}{\partial x}=\frac{\partial {u_{\varepsilon }}(t,L)}{\partial x}=0,\end{array}\right.\]
where $(t,x)\in [0,T]\times [0,L]$, $T>0$, $L>0$, $\varepsilon >0$, and μ is a stochastic measure defined on the Borel σ-algebra $\mathcal{B}([0,L])$.
Let G be the fundamental solution of the homogeneous cable equation, that is
(2)
\[ G(t,x,y)=\frac{{e^{-t}}}{\sqrt{4\pi t}}{\sum \limits_{n=-\infty }^{\infty }}\left({e^{-\frac{{(y-x-2nL)^{2}}}{4t}}}+{e^{-\frac{{(y+x-2nL)^{2}}}{4t}}}\right)\]
(see, for example, [33, p. 312] or [32, equality (5.69B)]). Then the mild solution of problem (1) is given by the formula
(3)
\[ {u_{\varepsilon }}(t,x)=\hspace{-0.1667em}\hspace{-0.1667em}{\int _{0}^{L}}\hspace{-0.1667em}\hspace{-0.1667em}G(t,x,y){u_{0}}(y)\hspace{0.1667em}dy+{\int _{[0,L]}}\hspace{-0.1667em}d\mu (y)\hspace{-0.1667em}{\int _{0}^{t}}\hspace{-0.1667em}G(t-s,x,y)\sigma (s/\varepsilon ,y)\hspace{0.1667em}ds\hspace{0.1667em}.\]
We study the convergence
\[ {u_{\varepsilon }}(t,x)\to \bar{u}(t,x)\hspace{0.1667em},\hspace{1em}\varepsilon \to 0\hspace{0.1667em},\]
where $\bar{u}(t,x)$ is the mild solution of the averaged equation, that is,
(4)
\[ \bar{u}(t,x)={\int _{0}^{L}}G(t,x,y){u_{0}}(y)\hspace{0.1667em}dy+{\int _{[0,L]}}d\mu (y){\int _{0}^{t}}G(t-s,x,y)\bar{\sigma }(y)\hspace{0.1667em}ds\hspace{0.1667em},\]
and
(5)
\[ \bar{\sigma }(x)=\underset{t\to \infty }{\lim }\frac{1}{t}{\int _{0}^{t}}\sigma (s,x)\hspace{0.1667em}ds\hspace{0.1667em}.\]
The rest of the paper is organized as follows. Section 2 contains some basic facts concerning the estimates of stochastic integrals with respect to general stochastic measures. In Section 3, we study the Hölder regularity of the mild solution of the cable equation with respect to the set of all variables. The averaging principle for the cable equation is established in Section 4.

2 Preliminaries

To prove the convergence of solutions, we will apply an estimate of a stochastic integral using the norm of the Besov space ${B_{22}^{\alpha }}([b,c])$, $\alpha \in (1/2,1)$, $b,c\in \mathbb{R}$ (see, for example, [16]). ${B_{22}^{\alpha }}([b,c])$ is the space of functions $g:[b,c]\to \mathbb{R}$ such that the norm
(6)
\[ \| g{\| _{{B_{22}^{\alpha }}([b,c])}}=\| g{\| _{{\mathsf{L}_{2}}([b,c])}}+{\Big({\int _{0}^{c-b}}{\big({w_{2,[b,c]}}(g,r)\big)^{2}}{r^{-2\alpha -1}}\hspace{0.1667em}dr\Big)^{1/2}},\]
is finite. Here
\[ {w_{2,[b,c]}}(g,r)=\underset{0\le h\le r}{\sup }{\left({\int _{b}^{c-h}}|g(s+h)-g(s){|^{2}}\hspace{0.1667em}ds\right)^{1/2}}.\]
Denote
\[ {\Delta _{kn}^{(L)}}=((k-1){2^{-n}}L,k{2^{-n}}L],\hspace{1em}n\ge 0,\hspace{1em}1\le k\le {2^{n}}.\]
Let Z be an arbitrary set and a function $g(y,z):[0,L]\times Z\to \mathbb{R}$ be such that $g(\operatorname{\mathbf{\cdot }},z)$ is continuous on $[0,L]$ for all $z\in Z$. Put
\[ {g_{n}}(y,z)=g(0,z){\mathbb{1}_{\{0\}}}(y)+\sum \limits_{1\le k\le {2^{n}}}g((k-1){2^{-n}}L,z){\mathbb{1}_{{\Delta _{kn}^{(L)}}}}(y).\]
By [27, Lemma 3], the random function
\[ \eta (z)={\int _{[0,L]}}g(y,z)d\mu (y),\hspace{1em}z\in Z,\]
has a version
\[\begin{aligned}{}\widetilde{\eta }(z)& ={\int _{[0,L]}}{g_{0}}(y,z)d\mu (y)\\ {} & +\sum \limits_{n\ge 1}\left({\int _{[0,L]}}{g_{n}}(y,z)d\mu (y)-{\int _{[0,L]}}{g_{n-1}}(y,z)d\mu (y)\right),\end{aligned}\]
such that, for all $\varepsilon >0$, $\omega \in \Omega $, $z\in Z$,
\[\begin{aligned}{}\left|\widetilde{\eta }(z)\right|& \le \left|g(0,z)\mu ([0,L])\right|\\ {} & +\hspace{-0.1667em}{\left\{\sum \limits_{n\ge 1}{2^{n\varepsilon }}\sum \limits_{1\le k\le {2^{n}}}{\left|g(k{2^{-n}}L,z)-g((k-1){2^{-n}}L,z)\right|^{2}}\right\}^{\frac{1}{2}}}\\ {} & \times {\left\{\sum \limits_{n\ge 1}{2^{-n\varepsilon }}\sum \limits_{1\le k\le {2^{n}}}{\left|\mu \left({\Delta _{kn}^{(L)}}\right)\right|^{2}}\right\}^{\frac{1}{2}}}.\end{aligned}\]
This version is the same for all $z\in Z$.
According to [16, Theorem 1.2], [21, Lemma 3.2] and [9, inequality (6)], we have
(7)
\[ \begin{aligned}{}\left|\widetilde{\eta }(z)\right|& \le |g(0,z)\mu ([0,L])|\\ {} & +C\| g(\operatorname{\mathbf{\cdot }},z){\| _{{B_{22}^{\alpha }}([0,L])}}{\left\{\sum \limits_{n\ge 1}{2^{-n\varepsilon }}\sum \limits_{1\le k\le {2^{n}}}{\left|\mu \left({\Delta _{kn}^{(L)}}\right)\right|^{2}}\right\}^{\frac{1}{2}}},\end{aligned}\]
where $\alpha =\varepsilon /2+1/2$, the constant C depends on $\alpha ,t$ and does not depend on $z,\omega $.
Here and in what follows the same symbol C denotes some positive constants that may be different in different places of the paper. The precise values of these constants are not important for our purposes.

3 Regularity of the mild solution of a cable equation

Regularity of the mild solution
(8)
\[ u(t,x)=\hspace{-0.1667em}\hspace{-0.1667em}{\int _{0}^{L}}\hspace{-0.1667em}\hspace{-0.1667em}G(t,x,y){u_{0}}(y)\hspace{0.1667em}dy+{\int _{[0,L]}}\hspace{-0.1667em}d\mu (y)\hspace{-0.1667em}{\int _{0}^{t}}\hspace{-0.1667em}G(t-s,x,y)\sigma (s,y)\hspace{0.1667em}ds\hspace{0.1667em},\]
of a cable equation driven by a general stochastic measure is studied in [25]. It was proved there that the paths of the solution are Hölder continuous. The following conditions was considered.
Condition 1. The function $\sigma (s,y):[0,T]\times [0,L]\to \mathbb{R}$ has the derivative $\frac{{\partial ^{2}}\sigma }{\partial t\partial x}$, which is continuous with respect to the pair of arguments.
Condition 2. The function ${u_{0}}(y)={u_{0}}(y,\omega ):[0,L]\times \Omega \to \mathbb{R}$ is measurable and has the derivative $\frac{\partial {u_{0}}}{\partial y}$, which is continuous with respect to y and bounded for all fixed $\omega \in \Omega $.
By [25, Theorem 5.1], if Conditions 1–2 hold, then for all fixed $\delta >0$, ${\gamma _{2}}<1/18$, and ${\gamma _{1}}<1/6$, function (8) has a version $\tilde{u}(t,x)$ such that
(9)
\[ |\tilde{u}({t_{1}},{x_{1}})-\tilde{u}({t_{2}},{x_{2}})|\le {L_{\tilde{u}}}(\omega )\left(|{t_{1}}-{t_{2}}{|^{{\gamma _{2}}}}+|{x_{1}}-{x_{2}}{|^{{\gamma _{1}}}}\right),\]
for all ${t_{1}},{t_{2}}\in [\delta ,T]$, ${x_{1}},{x_{2}}\in [0,L]$ and for some ${L_{\tilde{u}}}(\omega )>0$.
The proof of Theorem 5.1 ([25]) uses the Hölder regularity of the mild solution of a heat equation that is established in [21]. Restrictions ${\gamma _{1}}<1/6$ and ${\gamma _{2}}<1/18$ for relation (9) are due to the restrictions for the corresponding orders of the Hölder condition for the stochastic integrals from the heat equation (see [21, Lemma 5.1 and Lemma 6.1]). But now we can use the results of [4], which improve Hölder continuity orders obtained in [21]. Namely, the Hölder regularity with ${\gamma _{1}}<1/2$ and ${\gamma _{2}}<1/4$ for the mild solution of a parabolic equation with a stochastic measure is proved in [4, Lemma 1 and Lemma 2].
The following assumptions are used in the rest of the paper.
A1. The function ${u_{0}}(y)={u_{0}}(y,\omega ):[0,L]\times \Omega \to \mathbb{R}$ is measurable and Hölder continuous, that is
\[ |{u_{0}}({y_{1}})-{u_{0}}({y_{2}})|\le {L_{{u_{0}}}}(\omega )|{y_{1}}-{y_{2}}{|^{\beta ({u_{0}})}}\hspace{0.1667em},\hspace{0.2778em}\beta ({u_{0}})>0.\]
A2. $\sigma (s,y):{\mathbb{R}_{+}}\times [0,L]\to \mathbb{R}$ is measurable, bounded and Hölder continuous in $s\in {\mathbb{R}_{+}}$, $y\in [0,L]$, that is
\[\begin{aligned}{}|\sigma (s,y)|& \le {C_{\sigma }}\hspace{0.1667em},\\ {} |\sigma ({s_{1}},{y_{1}})-\sigma ({s_{2}},{y_{2}})|& \le {L_{\sigma }}\Big(|{s_{1}}-{s_{2}}{|^{\beta (\sigma )}}+|{y_{1}}-{y_{2}}{|^{\beta (\sigma )}}\Big)\hspace{0.1667em},\hspace{0.2778em}1/2<\beta (\sigma )<1.\end{aligned}\]
A3. Limit (5) exists and $\Sigma (r,y)={\textstyle\int _{0}^{t}}[\sigma (s,y)-\bar{\sigma }(y)]\hspace{0.1667em}ds$ is bounded for all $t\in {\mathbb{R}_{+}}$, $y\in [0,L]$.
Theorem 1.
Let Assumptions A1–A2 hold. Then there exists a version $\tilde{u}(t,x)$ of the random function $u(t,x)$ defined by (8) such that for all fixed $\delta >0$, ${\widetilde{\gamma }_{2}}<1/4\wedge (\beta (\sigma )-1/2)$ and ${\widetilde{\gamma }_{1}}<1-1/(2\beta (\sigma ))$, ${\widetilde{\gamma }_{1}}\le \beta ({u_{0}})$, we have
(10)
\[ |\tilde{u}({t_{1}},{x_{1}})-\tilde{u}({t_{2}},{x_{2}})|\le {C_{\tilde{u}}}(\omega )\left(|{t_{1}}-{t_{2}}{|^{{\widetilde{\gamma }_{2}}}}+|{x_{1}}-{x_{2}}{|^{{\widetilde{\gamma }_{1}}}}\right),\]
for all ${t_{1}},{t_{2}}\in [\delta ,T]$ and ${x_{1}},{x_{2}}\in [0,L]$ and for some constant ${C_{\tilde{u}}}(\omega )>0$.
Proof.
The reasoning is the same as that used in [25] with some differences. We have divided the proof into 3 steps: the Hölder continuity of the stochastic integral with respect to the space variable; the Hölder continuity of the stochastic integral with respect to the time variable and the Hölder continuity of the function $u(t,x)$.
Step 1. By obtaining the Hölder condition for the stochastic integral with respect to the space variable we get the analogues of [25, inequalities (3.1) and (3.2)]. We use Assumption A2 instead of Condition 1.
For any fixed ${x_{1}},{x_{2}}\in [0,L]$, and for $y\in [0,L]$, $h\in [0,L-y]$, put
\[\begin{aligned}{}F& =|{f_{n}}(s,{x_{2}},y+h)-{f_{n}}(s,{x_{1}},y+h)-{f_{n}}(s,{x_{2}},y)+{f_{n}}(s,{x_{1}},y)|\\ {} & \le |{f_{n}}(s,{x_{2}},y+h)-{f_{n}}(s,{x_{1}},y+h)|+|{f_{n}}(s,{x_{2}},y)-{f_{n}}(s,{x_{1}},y)|\\ {} & ={F_{1}}+{F_{2}},\end{aligned}\]
where notation
\[ {f_{n}}(s,x,y)=\frac{{e^{-(t-s)}}}{\sqrt{4\pi (t-s)}}{e^{-\frac{{(y-x-2nL)^{2}}}{4(t-s)}}}\sigma (s,y)\]
is used (see [25]).
Consider $n\ne 0,1$. By A2, we have
\[\begin{aligned}{}{F_{2}}& \le \frac{{C_{\sigma }}}{\sqrt{\pi }{(4(t-s))^{3/2}}}|{x_{1}}-{x_{2}}|2(|n|+1)L{e^{-\frac{\min \left\{{(y-{x_{1}}-2n)^{2}},{(y-{x_{2}}-2n)^{2}}\right\}{L^{2}}}{4(t-s)}}}\\ {} & \le \frac{C}{{(t-s)^{3/2}}}|{x_{1}}-{x_{2}}|\cdot |n|{e^{-\frac{{(2|n|-1)^{2}}{L^{2}}}{4(t-s)}}}.\end{aligned}\]
For details see the method used for obtaining bound (35) below. The same estimation holds for term ${F_{1}}$. Therefore,
(11)
\[ F\le \frac{C}{{(t-s)^{3/2}}}|{x_{1}}-{x_{2}}|\cdot |n|{e^{-\frac{{(2|n|-1)^{2}}{L^{2}}}{4(t-s)}}}.\]
On the other hand,
\[\begin{aligned}{}F& \le |{f_{n}}(s,{x_{1}},y+h)-{f_{n}}(s,{x_{1}},y)|+|{f_{n}}(s,{x_{2}},y+h)-{f_{n}}(s,{x_{2}},y)|\\ {} & ={\widetilde{F}_{1}}+{\widetilde{F}_{2}}.\end{aligned}\]
Since the function σ is bounded and Hölder continuous (by Assumption A2), and ${(t-s)^{-1/2}}\le T{(t-s)^{-3/2}}$, we obtain
\[\begin{aligned}{}{\widetilde{F}_{1}}& \le \frac{1}{\sqrt{4\pi (t-s)}}{e^{-\frac{{(y-{x_{1}}-2nL)^{2}}}{4(t-s)}}}|\sigma (s,y+h)-\sigma (s,y)|\\ {} & +\frac{1}{\sqrt{4\pi (t-s)}}\left|{e^{-\frac{{(y+h-{x_{1}}-2nL)^{2}}}{4(t-s)}}}-{e^{-\frac{{(y-{x_{1}}-2nL)^{2}}}{4(t-s)}}}\right||\sigma (s,y+h)|\\ {} & \le \frac{C}{{(t-s)^{3/2}}}\left(\hspace{-0.1667em}\hspace{-0.1667em}{L_{\sigma }}{h^{\beta (\sigma )}}\hspace{-0.1667em}+{C_{\sigma }}h2(|n|+1)L{e^{-\frac{\min \left\{{(y-{x_{1}}-2n)^{2}}\hspace{-0.1667em},{(y+h-{x_{1}}-2n)^{2}}\right\}{L^{2}}}{4(t-s)}}}\hspace{-0.1667em}\right)\\ {} & \le \frac{C}{{(t-s)^{3/2}}}{h^{\beta (\sigma )}}\cdot |n|{e^{-\frac{{(2|n|-1)^{2}}{L^{2}}}{4(t-s)}}}.\end{aligned}\]
The same estimate holds for term ${\widetilde{F}_{2}}$. Hence,
(12)
\[ F\le \frac{C}{{(t-s)^{3/2}}}{h^{\beta (\sigma )}}\cdot |n|{e^{-\frac{{(2|n|-1)^{2}}{L^{2}}}{4(t-s)}}}.\]
Raise the inequality (12) to the power ${\theta _{1}}$ and multiply by inequality (11) raised to the power $1-{\theta _{1}}$, for an arbitrary ${\theta _{1}}\in (0,1)$. We have
(13)
\[ F\le \frac{C}{{(t-s)^{3/2}}}|{x_{1}}-{x_{2}}{|^{1-{\theta _{1}}}}{h^{{\theta _{1}}\beta (\sigma )}}\cdot |n|{e^{-\frac{{(2|n|-1)^{2}}{L^{2}}}{4(t-s)}}},\]
for all $n\ne 0$.
For the same reason,
(14)
\[ \begin{aligned}{}|{f_{n}}(s,-{x_{2}},y+h)& -{f_{n}}(s,-{x_{1}},y+h)-{f_{n}}(s,-{x_{2}},y)+{f_{n}}(s,-{x_{1}},y)|\\ {} & \le \frac{C}{{(t-s)^{3/2}}}|{x_{1}}-{x_{2}}{|^{1-{\theta _{1}}}}{h^{{\theta _{1}}\beta (\sigma )}}\cdot |n|{e^{-\frac{\min \left\{{(2n)^{2}},{(2n-2)^{2}}\right\}{L^{2}}}{4(t-s)}}},\end{aligned}\]
for all $n\ne 0,1$.
Further, we can repeat the proof of Theorem 3.1 ([25]). Instead of using bounds (3.1) and (3.2) of [25], we can use inequalities (13) and (14) above. The integral from (6) is finite if ${\theta _{1}}\beta (\sigma )>1/2$. Thus we get the Hölder condition with respect to the space variable of the order
\[ {\widetilde{\gamma }_{1}}=1-{\theta _{1}}<1-\frac{1}{2\beta (\sigma )}<\frac{1}{2}.\]
Besides, as mentioned above, we use [4, Lemma 1 and Lemma 2] instead of [21, Lemma 5.1 and Lemma 6.1] in the case of $n=0,1$.
Step 2. The reasoning is the same in the case of the Hölder property with respect to the time variable. Given x and ${t_{1}}<{t_{2}}$ use the notation of paper [25], that is
\[\begin{aligned}{}{\bar{f}_{n}}(t,s,y)& =\frac{{e^{-(t-s)}}}{\sqrt{4\pi (t-s)}}\left({e^{-\frac{{(y-x-2nL)^{2}}}{4(t-s)}}}+{e^{-\frac{{(y+x-2nL)^{2}}}{4(t-s)}}}\right)\sigma (s,y),\hspace{1em}n\in \mathbb{Z},\\ {} {\bar{G}^{(1)}}(t,s,y)& =\sum \limits_{n\ne 0,1}{\bar{f}_{n}}(t,s,y),\end{aligned}\]
and
(15)
\[ \begin{aligned}{}\bar{g}(y)& ={\int _{0}^{{t_{2}}}}{\bar{G}^{(1)}}({t_{2}},s,y)ds-{\int _{0}^{{t_{1}}}}{\bar{G}^{(1)}}({t_{1}},s,y)ds.\end{aligned}\]
Moreover, denote
\[\begin{aligned}{}{\bar{G}_{1}}(t,s,y)& =\sum \limits_{n\ne 0,1}\frac{{e^{-(t-s)}}}{\sqrt{4\pi (t-s)}}\left({e^{-\frac{{(y-x-2nL)^{2}}}{4(t-s)}}}+{e^{-\frac{{(y+x-2nL)^{2}}}{4(t-s)}}}\right).\end{aligned}\]
Now we consider the case of $n\ne 0,1$, since the case of $n=0,1$ is the same as in the [25] with reference to [4, Lemma 1 and Lemma 2] instead of [21, Lemma 5.1 and Lemma 6.1] respectively. Namely, we get Hölder continuity of the order 1/4 for these terms.
We use the change of variables $s\to s+{t_{2}}-{t_{1}}$ in the first integral of (15) and obtain
\[\begin{aligned}{}\bar{g}(y)& ={\int _{{t_{1}}-{t_{2}}}^{{t_{1}}}}{\bar{G}_{1}}({t_{1}},s,y)\sigma (s+{t_{2}}-{t_{1}},y)ds-{\int _{0}^{{t_{1}}}}{\bar{G}_{1}}({t_{1}},s,y)\sigma (s,y)ds\\ {} & ={\int _{{t_{1}}-{t_{2}}}^{0}}{\bar{G}^{(1)}}({t_{2}},s+{t_{2}}-{t_{1}},y)\sigma (s+{t_{2}}-{t_{1}},y)ds\\ {} & +{\int _{0}^{{t_{1}}}}{\bar{G}_{1}}({t_{1}},s,y)\left(\sigma (s+{t_{2}}-{t_{1}},y)-\sigma (s,y)\right)ds\\ {} & ={\bar{g}_{1}}(y)+{\bar{g}_{2}}(y).\end{aligned}\]
Similarly to (12), by A2, we have
(16)
\[ |{\bar{f}_{n}}(t,s,y+h)-{\bar{f}_{n}}(t,s,y)|\le \frac{C}{{(t-s)^{3/2}}}{h^{\beta (\sigma )}}\cdot |n|{e^{-\frac{\min \left\{{(2n+1)^{2}},{(2n-2)^{2}}\right\}{L^{2}}}{4(t-s)}}},\]
and
\[ |{\bar{G}^{(1)}}({t_{2}},s+{t_{2}}-{t_{1}},y+h)-{\bar{G}^{(1)}}({t_{2}},s+{t_{2}}-{t_{1}},y)|\le \frac{C{h^{\beta (\sigma )}}}{{({t_{1}}-s)^{3/2}}}{e^{-\frac{{L^{2}}}{4({t_{1}}-s)}}}.\]
Therefore,
(17)
\[ \begin{aligned}{}|{\bar{g}_{1}}(y+h)-{\bar{g}_{1}}(y)|& \le C{h^{\beta (\sigma )}}\left|{\int _{{t_{1}}-{t_{2}}}^{0}}\frac{{e^{-\frac{{L^{2}}}{4({t_{1}}-s)}}}}{{({t_{1}}-s)^{3/2}}}ds\right|\le C{h^{\beta (\sigma )}}|{t_{2}}-{t_{1}}|,\end{aligned}\]
where we used the estimate
\[ \frac{{e^{-\frac{{L^{2}}}{4({t_{1}}-s)}}}}{{({t_{1}}-s)^{3/2}}}\le \frac{1}{{t_{1}^{3/2}}}\le \frac{1}{{\delta ^{3/2}}}\le C,\]
for s in the domain of integration.
Then, by assumption A2, we get
(18)
\[ \begin{aligned}{}|{\bar{g}_{2}}(y)|& \le \left|{\int _{0}^{{t_{1}}}}{\bar{G}_{1}}({t_{1}},s,y)\left(\sigma (s+{t_{2}}-{t_{1}},y)-\sigma (s,y)\right)ds\right|\\ {} & \le C|{t_{2}}-{t_{1}}{|^{\beta (\sigma )}}.\end{aligned}\]
On the other hand, the same reasoning as that used in obtaining bound (12) proves
(19)
\[ |{\bar{g}_{2}}(y+h)-{\bar{g}_{2}}(y)|\le C{h^{\beta (\sigma )}}.\]
Now we raise the inequality (19) to the power ${\theta _{2}}$ and multiply by inequality (18) raised to the power $1-{\theta _{2}}$, for an arbitrary ${\theta _{2}}\in (0,1)$. Thus we see that
(20)
\[ |\bar{g}(y+h)-\bar{g}(y)|\le C|{t_{2}}-{t_{1}}{|^{1-{\theta _{2}}}}{h^{{\theta _{2}}\beta (\sigma )}}.\]
Consequently, taking to consideration (17),
(21)
\[ {w_{2}}(\bar{g},r)\le C|{t_{2}}-{t_{1}}{|^{(1-{\theta _{2}})\beta (\sigma )}}{r^{{\theta _{2}}\beta (\sigma )}}.\]
From this point we can repeat the proof of Theorem 4.1 ([25]). Instead of using (4.2) of [25], we use bounds (20) and (21) above. Since the integral from (6) is finite for ${\theta _{2}}\beta (\sigma )>1/2$,
\[ 0<1-{\theta _{2}}<1-\frac{1}{2\beta (\sigma )}<\frac{1}{2}.\]
Therefore, we obtain the Hölder condition with respect to the time variable of the order
\[ {\widetilde{\gamma }_{2}}=\min \left\{\beta (\sigma )-\frac{1}{2},\frac{1}{4}\right\},\]
where we also count the case $n=0,1$.
Step 3. The last part of the proof is analogous to the proof of Theorem 5.1 in [25]. The integral
\[ {\int _{0}^{L}}G(t,x,y){u_{0}}(y)\hspace{0.1667em}dy\]
satisfies condition (10). To prove the Hölder regularity with respect to the space variable we consider ${x_{1}}<{x_{2}}$ and denote
\[ {G_{\pm }}(t,x,y)=\frac{{e^{-t}}}{\sqrt{4\pi t}}{\sum \limits_{n=-\infty }^{\infty }}{e^{-\frac{{(y\pm x-2nL)^{2}}}{4t}}}.\]
Then we use the change of variables $y\to y+{x_{2}}-{x_{1}}$ and $y\to y-{x_{2}}+{x_{1}}$ in the integrals involving ${x_{2}}$ and ${G_{-}}(t,x,y)$, ${G_{+}}(t,x,y)$ respectively. Thus
\[\begin{aligned}{}\Bigg|& \left.{\int _{0}^{L}}G(t,{x_{1}},y){u_{0}}(y)\hspace{0.1667em}dy-{\int _{0}^{L}}G(t,{x_{2}},y){u_{0}}(y)\hspace{0.1667em}dy\right|\\ {} & =\left|{\int _{0}^{L-{x_{2}}+{x_{1}}}}{G_{-}}(t,{x_{1}},y)\big({u_{0}}(y)-{u_{0}}(y+{x_{2}}-{x_{1}})\big)\hspace{0.1667em}dy\right.\\ {} & +{\int _{{x_{2}}-{x_{1}}}^{L}}{G_{+}}(t,{x_{1}},y)\big({u_{0}}(y)-{u_{0}}(y-{x_{2}}+{x_{1}})\big)\hspace{0.1667em}dy\\ {} & -{\int _{-{x_{2}}+{x_{1}}}^{0}}{G_{-}}(t,{x_{1}},y){u_{0}}(y+{x_{2}}-{x_{1}})\hspace{0.1667em}dy+{\int _{L-{x_{2}}+{x_{1}}}^{L}}{G_{-}}(t,{x_{1}},y){u_{0}}(y)\hspace{0.1667em}dy\\ {} & -\left.{\int _{L}^{L+{x_{2}}-{x_{1}}}}{G_{+}}(t,{x_{1}},y){u_{0}}(y-{x_{2}}+{x_{1}})\hspace{0.1667em}dy+{\int _{0}^{{x_{2}}-{x_{1}}}}{G_{+}}(t,{x_{1}},y){u_{0}}(y)\hspace{0.1667em}dy\right|\\ {} & \le {L_{{u_{0}}}}(\omega )|{x_{1}}-{x_{2}}{|^{\beta ({u_{0}})}}\hspace{-0.1667em}\left({\int _{0}^{L-{x_{2}}+{x_{1}}}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}|{G_{-}}(t,{x_{1}},y)|dy+\hspace{-0.1667em}{\int _{{x_{2}}-{x_{1}}}^{L}}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}|{G_{+}}(t,{x_{1}},y)|dy\right)\\ {} & +C(\omega )|{x_{1}}-{x_{2}}|\underset{t\in [\delta ,L],\hspace{0.1667em}{x_{1}},y\in [0,L]}{\sup }|G(t,x,y)|\le C(\omega )|{x_{1}}-{x_{2}}{|^{\beta ({u_{0}})}},\end{aligned}\]
where we use the boundedness of the function ${u_{0}}$ due to its Hölder continuity on $[0,L]$.
To prove the Hölder regularity with respect to the time variable we consider $\delta \le {t_{1}}<{t_{2}}\le T$. We get
\[\begin{array}{l}\displaystyle \begin{aligned}{}\big|{G_{+}}({t_{1}},x,y)& -{G_{+}}({t_{2}},x,y)\big|=\Bigg|\frac{{e^{-{t_{1}}}}}{\sqrt{4\pi {t_{1}}}}{\sum \limits_{n=-\infty }^{\infty }}{e^{-\frac{{(y+x-2nL)^{2}}}{4{t_{1}}}}}\\ {} & +\frac{{e^{-{t_{2}}}}}{\sqrt{4\pi {t_{2}}}}{\sum \limits_{n=-\infty }^{\infty }}{e^{-\frac{{(y+x-2nL)^{2}}}{4{t_{2}}}}}\Bigg|\\ {} & \le \frac{{e^{-{t_{1}}}}-{e^{-{t_{2}}}}}{\sqrt{4\pi {t_{1}}}}{\sum \limits_{n=-\infty }^{\infty }}{e^{-\frac{{(y+x-2nL)^{2}}}{4{t_{1}}}}}\end{aligned}\\ {} \displaystyle \begin{aligned}{}& +\frac{{e^{-{t_{2}}}}}{\sqrt{4\pi {t_{1}}}}{\sum \limits_{n=-\infty }^{\infty }}\Bigg|{e^{-\frac{{(y+x-2nL)^{2}}}{4{t_{1}}}}}-{e^{-\frac{{(y+x-2nL)^{2}}}{4{t_{2}}}}}\Bigg|\\ {} & +{e^{-{t_{2}}}}\left(\frac{1}{\sqrt{4\pi {t_{1}}}}-\frac{1}{\sqrt{4\pi {t_{2}}}}\right){\sum \limits_{n=-\infty }^{\infty }}{e^{-\frac{{(y+x-2nL)^{2}}}{4{t_{2}}}}}\\ {} & ={J_{1}}+{J_{2}}+{J_{3}}.\end{aligned}\end{array}\]
According to estimates (34), (25) and (27) from Section 4,
\[\begin{aligned}{}{J_{1}}& \le \frac{|{t_{1}}-{t_{2}}|}{\sqrt{4\pi {t_{1}}}}{\sum \limits_{n=-\infty }^{\infty }}{e^{-\frac{{(y+x-2nL)^{2}}}{4{t_{1}}}}}\\ {} & \le \frac{|{t_{1}}-{t_{2}}|}{\sqrt{4\pi \delta }}\left(\sum \limits_{n\ne 0}{e^{-\frac{\min \left\{{(2n)^{2}},\hspace{0.1667em}{(2n-2)^{2}}\right\}{L^{2}}}{4{t_{1}}}}}+1\right)\\ {} & \le C|{t_{1}}-{t_{2}}|.\end{aligned}\]
The similar arguments yield
\[\begin{aligned}{}{J_{2}}& \le \frac{1}{\sqrt{4\pi {t_{1}}}}{\sum \limits_{n=-\infty }^{\infty }}\Bigg|\frac{{(y+x-2nL)^{2}}}{4{t_{1}}}-\frac{{(y+x-2nL)^{2}}}{4{t_{2}}}\Bigg|\hspace{0.1667em}{e^{-\frac{{(y+x-2nL)^{2}}}{4{t_{1}}}}}\\ {} & \le C|{t_{1}}-{t_{2}}|{\sum \limits_{n=-\infty }^{\infty }}\frac{{(y+x-2nL)^{2}}}{4{t_{1}}}\hspace{0.1667em}{e^{-\frac{{(y+x-2nL)^{2}}}{4{t_{1}}}}}\\ {} & \le C|{t_{1}}-{t_{2}}|,\end{aligned}\]
where we use bound (30) (see Section 4 below).
Finally,
\[\begin{aligned}{}{J_{3}}& \le \frac{C}{\sqrt{4\pi {t_{1}}{t_{2}}}}\left(\sqrt{{t_{2}}}-\sqrt{{t_{1}}}\right)\hspace{-0.1667em}{\sum \limits_{n=-\infty }^{\infty }}{e^{-\frac{{(y+x-2nL)^{2}}}{4{t_{2}}}}}\le \frac{C}{\delta \sqrt{4\pi }}\sqrt{{t_{2}}-{t_{1}}}\le C\sqrt{{t_{2}}-{t_{1}}}.\end{aligned}\]
In consequence,
\[ \big|{G_{+}}({t_{1}},x,y)-{G_{+}}({t_{2}},x,y)\big|\le C\sqrt{{t_{2}}-{t_{1}}}.\]
Likewise, we get the same estimate for $\big|{G_{+}}({t_{1}},x,y)-{G_{+}}({t_{2}},x,y)\big|$. Hence,
\[ \left|{\int _{0}^{L}}G({t_{1}},x,y){u_{0}}(y)\hspace{0.1667em}dy-{\int _{0}^{L}}G({t_{2}},x,y){u_{0}}(y)\hspace{0.1667em}dy\right|\le C(\omega )\sqrt{{t_{2}}-{t_{1}}}.\]
The rest of the proof runs as respective part of the proof of Theorem 5.1 in [25] with the use of Steps 1 and 2 instead of [25, Theorems 3.1 and 4.1].  □

4 Averaging principle

In this section we consider the random functions ${u_{\varepsilon }}$ and $\bar{u}$ given by equations (3) and (4).
Theorem 2.
Assume that Assumptions A1–A3 hold. Then there exist versions of ${u_{\varepsilon }}$ and $\bar{u}$ such that for any $\gamma <\frac{1}{2}\Big(1-\frac{1}{2\beta (\sigma )}\Big)$, we have
\[ \underset{\varepsilon \in (0,T],\hspace{0.1667em}t\in [0,T],\hspace{0.1667em}x\in [0,L]}{\sup }{\varepsilon ^{-\gamma }}|{u_{\varepsilon }}(t,x)-\bar{u}(t,x)|<+\infty \hspace{1em}\textit{a.\hspace{0.17em}s.}\]
Proof.
By Theorem 1, if Assumptions A1–A2 hold, functions (3) and (4) have continuous in $(t,x)$ versions. We consider these versions.
Let $\varepsilon >0$, $t\in [0,T]$, $x\in [0,L]$ be fixed. Put
(22)
\[ g(t,x,y)={\int _{0}^{t}}G(t-s,x,y)[\sigma (s/\varepsilon ,y)-\bar{\sigma }(y)]\hspace{0.1667em}ds\hspace{0.1667em},\]
where the fundamental solution $G(t,x,y)$ is given by (2).
Then
\[ |{u_{\varepsilon }}(t,x)-\bar{u}(t,x)|=\left|{\int _{[0,L]}}g(t,x,y)d\mu (y)\right|\hspace{0.1667em}.\]
With the aim of using inequality (7), we estimate $|g(t,x,y)|,\hspace{0.1667em}y\in [0,L]$, and $|g(t,x,y+h)-g(t,x,y)|,\hspace{0.1667em}h\in [0,L-y]$, in terms of some positive powers of h and ε.
Denote
\[ {D_{n\pm }}=\frac{{(y\pm x-2nL)^{2}}}{4}\hspace{0.1667em}\]
and
\[ {\Sigma _{\varepsilon }}(r)={\int _{0}^{r}}[\sigma (t/\varepsilon -\tau ,y)-\bar{\sigma }(y)]\hspace{0.1667em}d\tau \hspace{0.1667em},\hspace{1em}0\le r\le t/\varepsilon \hspace{0.1667em}.\]
Then $|{\Sigma _{\varepsilon }}(r)|\le {C_{\Sigma }}$, where ${C_{\Sigma }}$ does not depend on ε, while ${\textstyle\int _{0}^{t}}[\sigma (s,y)-\bar{\sigma }(y)]\hspace{0.1667em}ds$ is bounded by A3.
In the integral from (22) we substitute $\tau =(t-s)/\varepsilon $ and obtain
\[\begin{aligned}{}|g(t,x,y)|& =\varepsilon \left|{\int _{0}^{t/\varepsilon }}G(\tau \varepsilon ,x,y)[\sigma (t/\varepsilon -\tau ,y)-\bar{\sigma }(y)]\hspace{0.1667em}d\tau \right|\\ {} & =\sqrt{\varepsilon }\bigg|{\int _{0}^{t/\varepsilon }}\frac{{e^{-\tau \varepsilon }}}{\sqrt{4\pi \tau }}{\sum \limits_{n=-\infty }^{\infty }}\left({e^{-\frac{{(y-x-2nL)^{2}}}{4\tau \varepsilon }}}+{e^{-\frac{{(y+x-2nL)^{2}}}{4\tau \varepsilon }}}\right)\\ {} & \times [\sigma (t/\varepsilon -\tau ,y)-\bar{\sigma }(y)]\hspace{0.1667em}d\tau \bigg|\\ {} & \le \frac{\sqrt{\varepsilon }}{\sqrt{4\pi }}\left|{\sum \limits_{n=-\infty }^{\infty }}{\int _{0}^{t/\varepsilon }}\frac{{e^{-\frac{{D_{n-}}}{\tau \varepsilon }}}}{\sqrt{\tau }}[\sigma (t/\varepsilon -\tau ,y)-\bar{\sigma }(y)]\hspace{0.1667em}d\tau \right.\\ {} & +\left.{\sum \limits_{n=-\infty }^{\infty }}{\int _{0}^{t/\varepsilon }}\frac{{e^{-\frac{{D_{n+}}}{\tau \varepsilon }}}}{\sqrt{\tau }}[\sigma (t/\varepsilon -\tau ,y)-\bar{\sigma }(y)]\hspace{0.1667em}d\tau \right|\hspace{0.1667em}.\end{aligned}\]
We have
(23)
\[ \begin{aligned}{}\left|{\sum \limits_{n=-\infty }^{\infty }}{\int _{0}^{1}}\frac{{e^{-\frac{{D_{n\pm }}}{\tau \varepsilon }}}}{\sqrt{\tau }}[\sigma (t/\varepsilon -\tau ,\right.& \left.y)-\bar{\sigma }(y)]\hspace{0.1667em}d\tau \right|\le 2{C_{\sigma }}{\int _{0}^{1}}{\sum \limits_{n=-\infty }^{\infty }}\frac{{e^{-\frac{{D_{n\pm }}}{\tau \varepsilon }}}}{\sqrt{\tau }}\hspace{0.1667em}d\tau \\ {} & \le 4{C_{\sigma }}\underset{\tau \le 1}{\sup }{\sum \limits_{n=-\infty }^{\infty }}{e^{-\frac{{D_{n\pm }}}{\tau \varepsilon }}}=4{C_{\sigma }}{\sum \limits_{n=-\infty }^{\infty }}{e^{-\frac{{D_{n\pm }}}{\varepsilon }}}\hspace{0.1667em}\end{aligned}\]
and
(24)
\[ \begin{aligned}{}\Bigg|& \left.{\sum \limits_{n=-\infty }^{\infty }}{\int _{1}^{t/\varepsilon }}\frac{{e^{-\frac{{D_{n\pm }}}{\tau \varepsilon }}}}{\sqrt{\tau }}[\sigma (t/\varepsilon -\tau ,y)-\bar{\sigma }(y)]\hspace{0.1667em}d\tau \right|=\left|{\sum \limits_{n=-\infty }^{\infty }}{\int _{1}^{t/\varepsilon }}\frac{{e^{-\frac{{D_{n\pm }}}{\tau \varepsilon }}}}{\sqrt{\tau }}\hspace{0.1667em}d{\Sigma _{\varepsilon }}(\tau )\right|\\ {} & =\left|{\sum \limits_{n=-\infty }^{\infty }}\frac{{e^{-\frac{{D_{n\pm }}}{\tau \varepsilon }}}}{\sqrt{\tau }}\hspace{0.1667em}{\Sigma _{\varepsilon }}(\tau ){\Big|_{1}^{t/\varepsilon }}-{\sum \limits_{n=-\infty }^{\infty }}{\int _{1}^{t/\varepsilon }}{\Sigma _{\varepsilon }}(\tau ){e^{-\frac{{D_{n\pm }}}{\tau \varepsilon }}}\left(\frac{{D_{n\pm }}}{\varepsilon \sqrt{{\tau ^{5}}}}-\frac{1}{2\sqrt{{\tau ^{3}}}}\right)\hspace{0.1667em}d\tau \right|\\ {} & \le 2{C_{\Sigma }}\underset{1\le \tau \le t/\varepsilon }{\sup }{\sum \limits_{n=-\infty }^{\infty }}{e^{-\frac{{D_{n\pm }}}{\tau \varepsilon }}}+{C_{\Sigma }}{\sum \limits_{n=-\infty }^{\infty }}{\int _{1}^{t/\varepsilon }}\frac{{D_{n\pm }}{e^{-\frac{{D_{n\pm }}}{\tau \varepsilon }}}}{\varepsilon \sqrt{{\tau ^{5}}}}d\tau \\ {} & \le 2{C_{\Sigma }}{\sum \limits_{n=-\infty }^{\infty }}{e^{-\frac{{D_{n\pm }}}{T}}}+{C_{\Sigma }}{\int _{1}^{t/\varepsilon }}\frac{{\textstyle\textstyle\sum _{n=-\infty }^{\infty }}{D_{n\pm }}{e^{-\frac{{D_{n\pm }}}{\tau \varepsilon }}}}{\varepsilon \sqrt{{\tau ^{5}}}}d\tau \hspace{0.1667em}.\end{aligned}\]
Now we estimate ${e^{-\frac{{D_{n\pm }}}{s}}}\hspace{0.1667em},\hspace{0.1667em}s\in [0,T]$. For $n=0$,
\[ {e^{-\frac{{D_{n\pm }}}{s}}}={e^{-\frac{{(y\pm x)^{2}}}{4s}}}\le 1.\]
Consider $n\ne 0$. In this case
(25)
\[ {e^{-\frac{{D_{n-}}}{s}}}\le {e^{-\frac{{(2|n|-1)^{2}}{L^{2}}}{4s}}}\hspace{1em}\text{and}\hspace{1em}{e^{-\frac{{D_{n+}}}{s}}}\le {e^{-\frac{\min \left\{{(2n)^{2}},\hspace{0.1667em}{(2n-2)^{2}}\right\}{L^{2}}}{4s}}}\hspace{0.1667em}.\]
Since
(26)
\[ \sum \limits_{n\ge 0}{e^{-{n^{2}}a}}\le \sum \limits_{n\ge 0}{e^{-na}}={(1-{e^{-a}})^{-1}}\le {(1-{e^{-b}})^{-1}},\hspace{1em}a\ge b>0,\]
and
\[ \sum \limits_{n\ge 1}{e^{-{n^{2}}a}}\le {e^{-a}}{(1-{e^{-a}})^{-1}}\le {e^{-b}}{(1-{e^{-b}})^{-1}},\hspace{1em}a\ge b>0,\]
we conclude that, for $s\in [0,T]$,
\[\begin{aligned}{}{\sum \limits_{n\ne 0,n=-\infty }^{\infty }}{e^{-\frac{{D_{n-}}}{s}}}& \le {\sum \limits_{n\ne 0,n=-\infty }^{\infty }}{e^{-\frac{{(2|n|-1)^{2}}{L^{2}}}{4s}}}\le 2{e^{-\frac{{L^{2}}}{4s}}}\sum \limits_{n\ge 0}{e^{-\frac{{n^{2}}{L^{2}}}{s}}}\\ {} & \le 2{e^{-\frac{{L^{2}}}{4s}}}{\left(1-{e^{-\frac{{L^{2}}}{s}}}\right)^{-1}}\le 2{\left(1-{e^{-\frac{{L^{2}}}{T}}}\right)^{-1}}.\end{aligned}\]
Analogously,
(27)
\[ \begin{aligned}{}{\sum \limits_{n\ne 0,n=-\infty }^{\infty }}{e^{-\frac{{D_{n+}}}{s}}}& \le {\sum \limits_{n\ne 0,n=-\infty }^{\infty }}{e^{-\frac{\min \left\{{(2n)^{2}},\hspace{0.1667em}{(2n-2)^{2}}\right\}{L^{2}}}{4s}}}\\ {} & =\sum \limits_{n\ge 1}{e^{-\frac{{(2n)^{2}}{L^{2}}}{4s}}}+\sum \limits_{n\ge 1}{e^{-\frac{{(2n-2)^{2}}{L^{2}}}{4s}}}\le 2{\left(1-{e^{-\frac{{L^{2}}}{T}}}\right)^{-1}}.\end{aligned}\]
Substitute obtained bounds to (23) and (24). We thus get
\[ \left|{\sum \limits_{n=-\infty }^{\infty }}{\int _{0}^{1}}\frac{{e^{-\frac{{D_{n\pm }}}{\tau \varepsilon }}}}{\sqrt{\tau }}[\sigma (t/\varepsilon -\tau ,y)-\bar{\sigma }(y)]\hspace{0.1667em}d\tau \right|\le 4{C_{\sigma }}\left(1+2{\left(1-{e^{-\frac{{L^{2}}}{T}}}\right)^{-1}}\right)\]
and
\[\begin{aligned}{}\left|{\sum \limits_{n=-\infty }^{\infty }}\right.& \left.{\int _{1}^{t/\varepsilon }}\frac{{e^{-\frac{{D_{n\pm }}}{\tau \varepsilon }}}}{\sqrt{\tau }}[\sigma (t/\varepsilon -\tau ,y)-\bar{\sigma }(y)]\hspace{0.1667em}d\tau \right|\\ {} & \le 2{C_{\Sigma }}\left(1+2{\left(1-{e^{-\frac{{L^{2}}}{T}}}\right)^{-1}}\right)+{C_{\Sigma }}{\int _{1}^{t/\varepsilon }}\frac{{\textstyle\textstyle\sum _{n=-\infty }^{\infty }}{D_{n\pm }}{e^{-\frac{{D_{n\pm }}}{\tau \varepsilon }}}}{\varepsilon \sqrt{{\tau ^{5}}}}d\tau \hspace{0.1667em}.\end{aligned}\]
Hence,
\[\begin{aligned}{}|& g(t,x,y)|\\ {} & \le C\sqrt{\varepsilon }\Bigg[C\hspace{-0.1667em}+\hspace{-0.1667em}\bigg|\hspace{-0.1667em}{\int _{1}^{t/\varepsilon }}\hspace{-0.1667em}\frac{{\textstyle\textstyle\sum _{n=-\infty }^{\infty }}{D_{n-}}{e^{-\frac{{D_{n-}}}{\tau \varepsilon }}}}{\varepsilon \sqrt{{\tau ^{5}}}}d\tau \bigg|\hspace{-0.1667em}+\hspace{-0.1667em}\bigg|\hspace{-0.1667em}{\int _{1}^{t/\varepsilon }}\hspace{-0.1667em}\frac{{\textstyle\textstyle\sum _{n=-\infty }^{\infty }}{D_{n+}}{e^{-\frac{{D_{n+}}}{\tau \varepsilon }}}}{\varepsilon \sqrt{{\tau ^{5}}}}d\tau \hspace{0.1667em}\bigg|\Bigg].\end{aligned}\]
Next we estimate the integrals from the last relation. For $|y|\le L$ and $|x|\le L$ it is clear that
(28)
\[ {D_{n\pm }}\le {(1+|n|)^{2}}{L^{2}}.\]
Therefore,
\[\begin{aligned}{}{\sum \limits_{n=-\infty }^{\infty }}{D_{n-}}{e^{-\frac{{D_{n-}}}{\tau \varepsilon }}}& ={D_{0-}}{e^{-\frac{{D_{0-}}}{\tau \varepsilon }}}+{\sum \limits_{n\ne 0,n=-\infty }^{\infty }}{D_{n-}}{e^{-\frac{{D_{n-}}}{\tau \varepsilon }}}\\ {} & \le {D_{0-}}{e^{-\frac{{D_{0-}}}{\tau \varepsilon }}}+2{L^{2}}{e^{-\frac{{L^{2}}}{4\tau \varepsilon }}}\sum \limits_{n\ge 0}{(n+2)^{2}}{e^{-\frac{n{L^{2}}}{\tau \varepsilon }}}\\ {} & \le {D_{0-}}{e^{-\frac{{D_{0-}}}{\tau \varepsilon }}}+C{L^{2}}{e^{-\frac{{L^{2}}}{4\tau \varepsilon }}}{(1-{e^{-\frac{{L^{2}}}{T}}})^{-1}}.\end{aligned}\]
where we use the relations
\[\begin{aligned}{}\sum \limits_{n\ge 1}{n^{2}}{e^{-na}}& =({e^{-a}}+{e^{-2a}}){(1-{e^{-a}})^{-3}}\le 2{e^{-a}}{(1-{e^{-a}})^{-3}}\le 2{(1-{e^{-a}})^{-1}},\\ {} \sum \limits_{n\ge 1}n{e^{-na}}& \le \sum \limits_{n\ge 1}{n^{2}}{e^{-na}}\le 2{(1-{e^{-a}})^{-1}},\hspace{1em}a>0\hspace{0.1667em},\end{aligned}\]
and estimate (26). Then, due to the fact that $\underset{D>0}{\max }D{e^{-\frac{D}{\tau \varepsilon }}}=\tau \varepsilon {e^{-1}}$, we have
(29)
\[ {\sum \limits_{n=-\infty }^{\infty }}{D_{n-}}{e^{-\frac{{D_{n-}}}{\tau \varepsilon }}}\le C\tau \varepsilon \hspace{0.1667em},\hspace{1em}C=C(L,T).\]
Consequently,
\[ {\int _{1}^{t/\varepsilon }}\frac{{\textstyle\textstyle\sum _{n=-\infty }^{\infty }}{D_{n-}}{e^{-\frac{{D_{n-}}}{\tau \varepsilon }}}}{\varepsilon \sqrt{{\tau ^{5}}}}d\tau \le C{\int _{1}^{t/\varepsilon }}\frac{1}{\sqrt{{\tau ^{3}}}}d\tau \le 2C.\]
In the same way we obtain
(30)
\[ \begin{aligned}{}{\sum \limits_{n=-\infty }^{\infty }}{D_{n+}}\hspace{0.1667em}& {e^{-\frac{{D_{n+}}}{\tau \varepsilon }}}={D_{0+}}{e^{-\frac{{D_{0+}}}{\tau \varepsilon }}}+{D_{1+}}{e^{-\frac{{D_{1+}}}{\tau \varepsilon }}}+{\sum \limits_{n\ne 0,1,\hspace{0.1667em}n=-\infty }^{\infty }}{D_{n+}}{e^{-\frac{{D_{n+}}}{\tau \varepsilon }}}\\ {} & \le 2\tau \varepsilon {e^{-1}}+{L^{2}}\sum \limits_{n\ge 1}{(n+1)^{2}}{e^{-\frac{{(2n)^{2}}{L^{2}}}{4\tau \varepsilon }}}+{L^{2}}\sum \limits_{n\ge 2}{(n+1)^{2}}{e^{-\frac{{(2n-2)^{2}}{L^{2}}}{4\tau \varepsilon }}}\\ {} & \le C\tau \varepsilon {(1-{e^{-\frac{{L^{2}}}{T}}})^{-1}}\le C\tau \varepsilon \hspace{0.1667em},\end{aligned}\]
which yields
\[ {\int _{1}^{t/\varepsilon }}\frac{{\textstyle\textstyle\sum _{n=-\infty }^{\infty }}{D_{n+}}{e^{-\frac{{D_{n+}}}{\tau \varepsilon }}}}{\varepsilon \sqrt{{\tau ^{5}}}}d\tau \le 2C.\]
Therefore, we get
\[ |g(t,x,y)|\le C(\sigma ,L,T)\sqrt{\varepsilon }=C\sqrt{\varepsilon }\hspace{0.1667em}\]
and so
(31)
\[ \begin{aligned}{}|g(t,x,y+h)-g(t,x,y)|& \le C\sqrt{\varepsilon },\hspace{1em}\| g(t,x,\cdot ){\| _{{L_{2}}[0,L]}}\le C\sqrt{\varepsilon },\\ {} \hspace{1em}{w_{2,[0,L]}^{2}}(g,r)& \le C\varepsilon .\end{aligned}\]
Now we estimate $|g(t,x,y+h)-g(t,x,y)|$ and then ${w_{2,[0,L]}^{2}}(g,r)$ in terms of some positive power of h. Thus,
\[\begin{aligned}{}|g(t,& x,y+h)-g(t,x,y)|\\ {} & =\left|{\int _{0}^{t}}\left(G(t-s,x,y+h)-G(t-s,x,y)\right)[\sigma (s/\varepsilon ,y+h)-\bar{\sigma }(y+h)]\hspace{0.1667em}ds\right.\\ {} & +\left.{\int _{0}^{t}}G(t-s,x,y)\left([\sigma (s/\varepsilon ,y+h)-\sigma (s/\varepsilon ,y)]-[\bar{\sigma }(y+h)-\bar{\sigma }(y)]\right)\hspace{0.1667em}ds\right|\\ {} & =|{I_{1}}+{I_{2}}|\hspace{0.1667em},\end{aligned}\]
and then
(32)
\[ {\int _{0}^{L-h}}|g(t,x,y+h)-g(t,x,y){|^{2}}\hspace{0.1667em}dy\le 2{\int _{0}^{L-h}}{I_{1}^{2}}\hspace{0.1667em}dy+2{\int _{0}^{L-h}}{I_{2}^{2}}\hspace{0.1667em}dy\hspace{0.1667em}.\]
By condition A3 and finiteness of ${\textstyle\sum _{n=-\infty }^{\infty }}{e^{-\frac{{D_{n\pm }}}{s}}}$, we obtain
(33)
\[ \begin{aligned}{}|{I_{2}}|\le & C2{L_{\sigma }}{h^{\beta (\sigma )}}{\int _{0}^{t}}\frac{{e^{-(t-s)}}}{\sqrt{4\pi (t-s)}}\hspace{0.1667em}ds\le C2{L_{\sigma }}{h^{\beta (\sigma )}}\sqrt{t}\le C{h^{\beta (\sigma )}}\hspace{0.1667em},\\ {} {\int _{0}^{L-h}}{I_{2}^{2}}\hspace{0.1667em}dy& \le C{h^{2\beta (\sigma )}}\hspace{0.1667em}.\end{aligned}\]
Denote
\[ {D_{n\pm }^{h}}=\frac{{(y+h\pm x-2nL)^{2}}}{4}\hspace{0.1667em}.\]
Recall that here $h\in [0,L]$ and we consider the integrals in (32) such that $y+h\le L$. So
\[\begin{aligned}{}|{I_{1}}|& =\left|{\int _{0}^{t}}\frac{{e^{-(t-s)}}}{\sqrt{4\pi (t-s)}}{\sum \limits_{n=-\infty }^{\infty }}\left({e^{-\frac{{D_{n-}^{h}}}{t-s}}}-{e^{-\frac{{D_{n-}}}{t-s}}}\right)[\sigma (s/\varepsilon ,y+h)-\bar{\sigma }(y+h)]ds\right.\\ {} & +\left.{\int _{0}^{t}}\frac{{e^{-(t-s)}}}{\sqrt{4\pi (t-s)}}{\sum \limits_{n=-\infty }^{\infty }}\left({e^{-\frac{{D_{n+}^{h}}}{t-s}}}-{e^{-\frac{{D_{n+}}}{t-s}}}\right)[\sigma (s/\varepsilon ,y+h)-\bar{\sigma }(y+h)]\hspace{0.1667em}ds\right|\\ {} & =|{I_{1-}}+{I_{1+}}|\hspace{0.1667em}.\end{aligned}\]
Since ${e^{-(t-s)}}\le 1$, for $t-s\ge 0$, we conclude by Assumption A2 that
\[\begin{aligned}{}|{I_{1-}}|& \le 2{C_{\sigma }}\left|{\int _{0}^{t}}\frac{1}{\sqrt{4\pi (t-s)}}{\sum \limits_{n=-\infty }^{\infty }}\left({e^{-\frac{{D_{n-}^{h}}}{t-s}}}-{e^{-\frac{{D_{n-}}}{t-s}}}\right)\hspace{0.1667em}ds\right|\\ {} & =2{C_{\sigma }}\Bigg|\sum \limits_{n=0,\pm 1}{\int _{0}^{t}}\frac{1}{\sqrt{4\pi (t-s)}}\left({e^{-\frac{{D_{n-}^{h}}}{t-s}}}-{e^{-\frac{{D_{n-}}}{t-s}}}\right)ds\\ {} & +{\int _{0}^{t}}\frac{1}{\sqrt{4\pi (t-s)}}\sum \limits_{|n|\ge 2}\left({e^{-\frac{{D_{n-}^{h}}}{t-s}}}-{e^{-\frac{{D_{n-}}}{t-s}}}\right)ds\Bigg|.\end{aligned}\]
For $n=0,\pm 1$, the values of ${D_{n-}^{h}}$ and ${D_{n-}}$ are bounded by $4{L^{2}}$. Thus, the same reasoning as that used in obtaining the bound of ${I_{2}}$ in [22, inequality (13)] proves
\[ \left|{\int _{0}^{t}}\frac{1}{\sqrt{4\pi (t-s)}}\left({e^{-\frac{{D_{n-}^{h}}}{t-s}}}-{e^{-\frac{{D_{n-}}}{t-s}}}\right)ds\right|\le C|h\ln h|\le C{h^{\beta (\sigma )}}.\]
Consider the second integral. We have
\[ \sum \limits_{|n|\ge 2}\left|{e^{-\frac{{D_{n-}^{h}}}{t-s}}}-{e^{-\frac{{D_{n-}}}{t-s}}}\right|\le \sum \limits_{|n|\ge 2}\frac{2h|y+\frac{h}{2}-x-2nL|}{4(t-s)}{e^{-\frac{\min \{{D_{n-}^{h}},{D_{n-}}\}}{t-s}}},\]
where we use the following relation
(34)
\[ \big|{e^{-a}}-{e^{-b}}\big|\le {e^{-\min \{a,b\}}}|a-b|,\hspace{1em}a,b\ge 0.\]
According to (28),
\[ \Big|y+\frac{h}{2}-x-2nL\Big|\le 2{(1+|n|)^{2}}L,\]
and analogously to (25) we obtain
\[ {e^{-\frac{\min \{{D_{n-}^{h}},{D_{n-}}\}}{t-s}}}\le {e^{-\frac{{(2|n|-1)^{2}}{L^{2}}}{4(t-s)}}},\hspace{1em}|n|\ge 2.\]
Hence,
(35)
\[ \begin{aligned}{}\left|{\int _{0}^{t}}\frac{1}{\sqrt{4\pi (t-s)}}\right.& \left.\sum \limits_{|n|\ge 2}\left({e^{-\frac{{D_{n-}^{h}}}{t-s}}}-{e^{-\frac{{D_{n-}}}{t-s}}}\right)ds\right|\\ {} & \le Ch{\int _{0}^{t}}\frac{1}{4{(t-s)^{3/2}}}\sum \limits_{n\ge 2}{(1+n)^{2}}{L^{2}}{e^{-\frac{{(2n-1)^{2}}{L^{2}}}{4(t-s)}}}\hspace{0.1667em}ds.\end{aligned}\]
Then we use the same reasoning as in getting (29) and have
\[ \sum \limits_{n\ge 2}{(1+n)^{2}}{L^{2}}{e^{-\frac{{(2n-1)^{2}}{L^{2}}}{4(t-s)}}}\le C4(t-s).\]
It follows that
\[ \left|{\int _{0}^{t}}\frac{1}{\sqrt{4\pi (t-s)}}\sum \limits_{|n|\ge 2}\left({e^{-\frac{{D_{n-}^{h}}}{t-s}}}-{e^{-\frac{{D_{n-}}}{t-s}}}\right)ds\right|\le Ch\sqrt{t}\le Ch,\]
and finally that
\[ |{I_{1-}}|\le C{h^{\beta (\sigma )}}.\]
The same estimate holds for term $|{I_{1+}}|\le C{h^{\beta (\sigma )}}$. Hence,
\[ {\int _{0}^{L-h}}{I_{1}^{2}}\hspace{0.1667em}dy\le C{h^{2\beta (\sigma )}}.\]
Taking into account (33), we deduce that
\[\begin{aligned}{}{\int _{0}^{L-h}}|g(t,x,y+h)-g(t,x,y){|^{2}}\hspace{0.1667em}dy& \le C{h^{2\beta (\sigma )}},\\ {} {w_{2,[0,L]}^{2}}(g,r)& \le C{r^{2\beta (\sigma )}}.\end{aligned}\]
Raise the latter inequality to the power θ and multiply by inequality (31) raised to the power $1-\theta $, for an arbitrary $\theta \in (0,1)$. We have
\[ {w_{2,[0,L]}^{2}}(g,r)\le C{r^{2\theta \beta (\sigma )}}{\varepsilon ^{1-\theta }}.\]
Thus, for any $\gamma <\frac{1}{2}\Big(1-\frac{1}{2\beta (\sigma )}\Big)$, there exists $\alpha <\theta \beta (\sigma )$ such that
\[ \| g{\| _{{B_{22}^{\alpha }}([b,c])}}\le C\sqrt{\varepsilon }+C{\varepsilon ^{(1-\theta )/2}}{\bigg({\int _{0}^{t}}{r^{2\theta \beta (\sigma )-2\alpha -1}}dr\bigg)^{\frac{1}{2}}}\le C{\varepsilon ^{\gamma }}.\]
Consequently, by relation (7),
\[\begin{aligned}{}|{u_{\varepsilon }}(& t,x)-\bar{u}(t,x)|=\left|{\int _{[0,L]}}g(t,x,y)d\mu (y)\right|\\ {} & \le |g(0,z)\mu ([0,L])|+C\| g(\operatorname{\mathbf{\cdot }},z){\| _{{B_{22}^{\alpha }}([0,L])}}{\left\{\sum \limits_{n\ge 1}{2^{-n\varepsilon }}\sum \limits_{1\le k\le {2^{n}}}{\left|\mu \left({\Delta _{kn}^{(L)}}\right)\right|^{2}}\right\}^{\frac{1}{2}}}\\ {} & \le C{\varepsilon ^{\gamma }}\left(|\mu ([0,L])|+{\left\{\sum \limits_{n\ge 1}{2^{-n\varepsilon }}\sum \limits_{1\le k\le {2^{n}}}{\left|\mu \left({\Delta _{kn}^{(L)}}\right)\right|^{2}}\right\}^{\frac{1}{2}}}\right)\le C(\omega ){\varepsilon ^{\gamma }}\hspace{0.1667em},\end{aligned}\]
where the sum with the stochastic measure is finite in view of [21, Lemma 3.1], and the constant $C(\omega )$ does not depend on $t,x$ and ε.  □

Acknowledgement

The author is grateful to the anonymous referee for careful reading of the paper and valuable comments and suggestions.

References

[1] 
Ahmed, H.M., Zhu, Q.: The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps. Appl. Math. Lett. 112 (2021). MR4151504. https://doi.org/10.1016/j.aml.2020.106755
[2] 
Avetisian, D., Ralchenko, K.: Ergodic properties of the solution to a fractional stochastic heat equation, with an application to diffusion parameter estimation. Mod. Stoch. Theory Appl. 7(3), 339–356 (2020). MR4159153
[3] 
Bao, J., Yin, G., Yuan, C.: Two-time-scale stochastic partial differential equations driven by α-stable noises: averaging principles. Bernoulli 23(1), 645–669 (2017). MR3556788. https://doi.org/10.3150/14-BEJ677
[4] 
Bodnarchuk, I.M.: Regularity of the mild solution of a parabolic equation with random measure. Ukr. Math. J. 69(1), 1–18 (2017). MR3631616. https://doi.org/10.1007/s11253-017-1344-4
[5] 
Bodnarchuk, I.M.: Wave equation with a stochastic measure. Theory Probab. Math. Stat. 94, 1–16 (2017). MR3553450. https://doi.org/10.1090/tpms/1005
[6] 
Bodnarchuk, I.M., Radchenko, V.M.: Equation for vibrations of a fixed string driven by a general stochastic measure. Teor. Imovir. Mat. Stat. 101, 5–14 (2019)
[7] 
Bodnarchuk, I.M., Radchenko, V.M.: Wave equation in the plane driven by a general stochastic measure. Theory Probab. Math. Stat. 98, 73–90 (2019). MR3992992
[8] 
Bodnarchuk, I.M., Radchenko, V.M.: The wave equation in the three-dimensional space driven by a general stochastic measure. Theory Probab. Math. Stat. 100, 43–60 (2020). MR3992992
[9] 
Bodnarchuk, I.M., Shevchenko, G.M.: Heat equation in a multidimensional domain with a general stochastic measure. Theory Probab. Math. Stat. 93, 1–17 (2016). MR3553436. https://doi.org/10.1090/tpms/991
[10] 
Bréhier, C.-E.: Strong and weak orders in averaging for SPDEs. Stoch. Process. Appl. 122(7), 2553–2593 (2012). MR2926167. https://doi.org/10.1016/j.spa.2012.04.007
[11] 
Bréhier, C.-E.: Orders of convergence in the averaging principle for SPDEs: The case of a stochastically forced slow component. Stoch. Process. Appl. 130(6), 3325–3368 (2020). MR4092407. https://doi.org/10.1016/j.spa.2019.09.015
[12] 
Cerrai, S., Lunardi, A.: Averaging principle for nonautonomous slow-fast systems of stochastic reaction-diffusion equations: The almost periodic case. SIAM J. Math. Anal. 49(4), 2843–2884 (2017). MR3679916. https://doi.org/10.1137/16M1063307
[13] 
Fu, H., Liu, J.: Strong convergence in stochastic averaging principle for two time-scales stochastic partial differential equations. J. Math. Anal. Appl. 384(1), 70–86 (2011). MR2822851. https://doi.org/10.1016/j.jmaa.2011.02.076
[14] 
Fu, H., Wan, L., Liu, J., Liu, X.: Weak order in averaging principle for stochastic wave equation with a fast oscillation. Stoch. Process. Appl. 128, 2557–2580 (2018). MR3811697. https://doi.org/10.1016/j.spa.2017.09.021
[15] 
Gao, P.: Averaging principle for the higher order nonlinear Schrödinger equation with a random fast oscillation. J. Stat. Phys. 171, 897–926 (2018). MR3800899. https://doi.org/10.1007/s10955-018-2048-3
[16] 
Kamont, A.: A discrete characterization of Besov spaces. Approx. Theory Appl. 13(2), 63–77 (1997). MR1750304
[17] 
Kwapień, S., Woyczyński, W.A.: Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston (1992). MR1167198. https://doi.org/10.1007/978-1-4612-0425-1
[18] 
Liu, W., Röckner, M., Sun, X., Xie, Y.: Averaging principle for slow-fast stochastic differential equations with time dependent locally Lipschitz coefficients. J. Differ. Equ. 268(6), 2910–2948 (2020). MR4047972. https://doi.org/10.1016/j.jde.2019.09.047
[19] 
Pryhara, L., Shevchenko, G.: Stochastic wave equation in a plane driven by spatial stable noise. Mod. Stoch. Theory Appl. 3(3), 237–248 (2016). MR3576308. https://doi.org/10.15559/16-VMSTA62
[20] 
Pryhara, L.I., Shevchenko, G.M.: Wave equation with a stable noise. Theory Probab. Math. Stat. 96, 145–157 (2018). MR3666878. https://doi.org/10.1090/tpms/1040
[21] 
Radchenko, V.: Mild solution of the heat equation with a general stochastic measure. Stud. Math. 194(3), 231–251 (2009). MR2539554. https://doi.org/10.4064/sm194-3-2
[22] 
Radchenko, V.: Averaging principle for the heat equation driven by a general stochastic measure. Stat. Probab. Lett. 146, 224–230 (2019). MR3885229. https://doi.org/10.1016/j.spl.2018.11.024
[23] 
Radchenko, V.: Strong convergence rate in averaging principle for the heat equation driven by a general stochastic measure. Commun. Stoch. Anal. 13(2) (2019). MR4002769. https://doi.org/10.31390/cosa.13.2.01
[24] 
Radchenko, V., Stefans’ka, N.: Approximation of solutions of the stochastic wave equation by using the Fourier series. Mod. Stoch. Theory Appl. 5(4), 429–444 (2018). MR3914723. https://doi.org/10.15559/18-vmsta115
[25] 
Radchenko, V.M.: Cable equation with a general stochastic measure. Theory Probab. Math. Stat. 84, 131–138 (2012). MR2857423. https://doi.org/10.1090/S0094-9000-2012-00856-9
[26] 
Radchenko, V.M.: Averaging principle for equation driven by a stochastic measure. Stochastics 91(6), 905–915 (2019). MR3985803. https://doi.org/10.1080/17442508.2018.1559320
[27] 
Radchenko, V.N.: Evolution equations with general stochastic measures in Hilbert space. Theory Probab. Appl. 59(2), 328–339 (2015). MR3416054. https://doi.org/10.1137/S0040585X97T987119
[28] 
Ralchenko, K., Shevchenko, G.: Existence and uniqueness of mild solution to fractional stochastic heat equation. Mod. Stoch. Theory Appl. 6(1), 57–79 (2019). MR3935427. https://doi.org/10.15559/18-vmsta122
[29] 
Rusanyuk, L.I., Shevchenko, G.M.: Wave equation for a homogeneous string with fixed ends driven by a stable random noise. Theory Probab. Math. Stat. 98, 171–181 (2019)
[30] 
Shen, G., Wu, J.-L., Yin, X.: Averaging principle for fractional heat equations driven by stochastic measures. Appl. Math. Lett. 106 (2020). MR4090373. https://doi.org/10.1016/j.aml.2020.106404
[31] 
Shen, G., Xiao, R., Yin, X.: Averaging principle and stability of hybrid stochastic fractional differential equations driven by Lévy noise. Int. J. Syst. Sci. 51(12), 2115–2133 (2020). MR4141427. https://doi.org/10.1080/00207721.2020.1784493
[32] 
Tuckwell, H.C.: Introduction to Theoretical Neurobiology. Volume 1. Linear Cable Theory and Dendritic Structure. Cambridge University Press, New York (1988). MR0947345
[33] 
Walsh, J.B.: An introduction to stochastic partial differential equations. In: Lecture Notes in Mathematics vol. 1180, pp. 265–439. Springer, Berlin (1986). MR0876085. https://doi.org/10.1007/BFb0074920
[34] 
Wang, P., Xu, Y.: Averaging method for neutral stochastic delay differential equations driven by fractional Brownian motion. J. Funct. Spaces 2020 (2020). MR4108143. https://doi.org/10.1155/2020/5212690
Reading mode PDF XML

Table of contents
  • 1 Introduction
  • 2 Preliminaries
  • 3 Regularity of the mild solution of a cable equation
  • 4 Averaging principle
  • Acknowledgement
  • References

Copyright
© 2020 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Averaging principle stochastic cable equation stochastic measure mild solution Hölder regularity

MSC2010
60G57 60H05 60H15

Funding
This research was partially supported by the Alexander von Humboldt Foundation in the framework of the Research Group Linkage Potsdam/Kyiv entitled “Singular diffusions: analytic and stochastic approaches”.

Metrics
since March 2018
546

Article info
views

477

Full article
views

398

PDF
downloads

141

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

  • Theorems
    2
Theorem 1.
Theorem 2.
Theorem 1.
Let Assumptions A1–A2 hold. Then there exists a version $\tilde{u}(t,x)$ of the random function $u(t,x)$ defined by (8) such that for all fixed $\delta >0$, ${\widetilde{\gamma }_{2}}<1/4\wedge (\beta (\sigma )-1/2)$ and ${\widetilde{\gamma }_{1}}<1-1/(2\beta (\sigma ))$, ${\widetilde{\gamma }_{1}}\le \beta ({u_{0}})$, we have
(10)
\[ |\tilde{u}({t_{1}},{x_{1}})-\tilde{u}({t_{2}},{x_{2}})|\le {C_{\tilde{u}}}(\omega )\left(|{t_{1}}-{t_{2}}{|^{{\widetilde{\gamma }_{2}}}}+|{x_{1}}-{x_{2}}{|^{{\widetilde{\gamma }_{1}}}}\right),\]
for all ${t_{1}},{t_{2}}\in [\delta ,T]$ and ${x_{1}},{x_{2}}\in [0,L]$ and for some constant ${C_{\tilde{u}}}(\omega )>0$.
Theorem 2.
Assume that Assumptions A1–A3 hold. Then there exist versions of ${u_{\varepsilon }}$ and $\bar{u}$ such that for any $\gamma <\frac{1}{2}\Big(1-\frac{1}{2\beta (\sigma )}\Big)$, we have
\[ \underset{\varepsilon \in (0,T],\hspace{0.1667em}t\in [0,T],\hspace{0.1667em}x\in [0,L]}{\sup }{\varepsilon ^{-\gamma }}|{u_{\varepsilon }}(t,x)-\bar{u}(t,x)|<+\infty \hspace{1em}\textit{a.\hspace{0.17em}s.}\]

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy