Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 8, Issue 2 (2021)
  4. Chaos expansion of uniformly distributed ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Chaos expansion of uniformly distributed random variables and application to number theory
Volume 8, Issue 2 (2021), pp. 275–289
Ciprian Tudor ORCID icon link to view author Ciprian Tudor details  

Authors

 
Placeholder
https://doi.org/10.15559/21-VMSTA172
Pub. online: 26 March 2021      Type: Research Article      Open accessOpen Access

Received
29 January 2021
Revised
13 February 2021
Accepted
20 February 2021
Published
26 March 2021

Abstract

The chaos expansion of a random variable with uniform distribution is given. This decomposition is applied to analyze the behavior of each chaos component of the random variable $\log \zeta $ on the so-called critical line, where ζ is the Riemann zeta function. This analysis gives a better understanding of a famous theorem by Selberg.

References

[1] 
Bourgade, P.: Mesoscopic fluctuations of the zeta zeros. Probab. Theory Relat. Fields 148(3-4), 479–500 (2010). MR2678896. https://doi.org/10.1007/s00440-009-0237-3
[2] 
Coram, M., Diaconis, P.: New tests of the correspondence between unitary eigenvalues and the zeros of Riemann’s zeta function. J. Phys. A, Math. Gen. 36, 2883–2906 (2003). Random matrix theory. MR1986397. https://doi.org/10.1088/0305-4470/36/12/302
[3] 
Erdös, P.: On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Natl. Acad. Sci. USA 35, 374–384 (1949). MR29411. https://doi.org/10.1073/pnas.35.7.374
[4] 
Hadamard, J.: Sur la distribution des zéros de la fonction $\zeta (s)$ et ses conséquences arithmétiques. Bull. Soc. Math. Fr. 24, 199–220 (1896). MR1504264
[5] 
Hu, Y., Nualart, D.: Renormalized self-intersection local time for fractional Brownian motion. Ann. Probab. 33(3), 948–983 (2005). MR2135309. https://doi.org/10.1214/009117905000000017
[6] 
Hughes, C.P., Nikeghbali, A., Yor, M.: An arithmetic model for the total disorder process. Probab. Theory Relat. Fields 141(1-2), 47–59 (2008). MR2372965. https://doi.org/10.1007/s00440-007-0079-9
[7] 
Kühn, P.: On Selberg’s central limit theorem. Master Thesis, ETH Zurich.
[8] 
Nourdin, I., Peccati, G., Rossi, M.: Nodal statistics of planar random waves. Commun. Math. Phys. 369(1), 99–151 (2019). MR3959555. https://doi.org/10.1007/s00220-019-03432-5
[9] 
Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Probability and its Applications (New York), p. 382. Springer (2006). MR2200233
[10] 
Nualart, D., Zheng, G.: Averaging Gaussian functionals. Electron. J. Probab. 25, 48–54 (2020). MR4092767. https://doi.org/10.1214/20-ejp453
[11] 
Selberg, A.: On the normal density of primes in small intervals, and the difference between consecutive primes. Arch. Math. Naturvidensk. 47(6), 87–105 (1943). MR12624
[12] 
Selberg, A.: On the remainder in the formula for $N(T)$, the number of zeros of $\zeta (s)$ in the strip $0<t<T$. Avh. Nor. Vidensk.-Akad. Oslo, I 1944(1), 27 (1944). MR15426
[13] 
Selberg, A.: Contributions to the theory of the Riemann zeta-function. Arch. Math. Naturvidensk. 48(5), 89–155 (1946). MR20594
[14] 
Tao, T.: Selberg’s limit theorem for the Riemann zeta function on the critical line. Blog article.
[15] 
Titchmarsh, E.C.: The Theory of the Riemann Zeta-function, 2nd edn., p. 412. The Clarendon Press, Oxford University Press, New York (1986). Edited and with a preface by D.R. Heath-Brown. MR882550
[16] 
Tsang, K.: Selberg’s limit theorem for the Riemann zeta function on the critical line. Blog article.

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2021 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Riemann zeta function Malliavin calculus multiple Wiener–Itô integrals Selberg theorem

MSC2010
60F05 60H05 1M06

Funding
C. Tudor was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01) and MATHAMSUD project SARC (19-MATH-06).

Metrics
since March 2018
544

Article info
views

693

Full article
views

438

PDF
downloads

135

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy