Statistical inference for nonergodic weighted fractional Vasicek models
Volume 8, Issue 3 (2021), pp. 291–307
Pub. online: 26 March 2021
Type: Research Article
Open Access
Received
31 December 2020
31 December 2020
Revised
2 March 2021
2 March 2021
Accepted
2 March 2021
2 March 2021
Published
26 March 2021
26 March 2021
Abstract
A problem of drift parameter estimation is studied for a nonergodic weighted fractional Vasicek model defined as $d{X_{t}}=\theta (\mu +{X_{t}})dt+d{B_{t}^{a,b}}$, $t\ge 0$, with unknown parameters $\theta >0$, $\mu \in \mathbb{R}$ and $\alpha :=\theta \mu $, whereas ${B^{a,b}}:=\{{B_{t}^{a,b}},t\ge 0\}$ is a weighted fractional Brownian motion with parameters $a>-1$, $|b|<1$, $|b|<a+1$. Least square-type estimators $({\widetilde{\theta }_{T}},{\widetilde{\mu }_{T}})$ and $({\widetilde{\theta }_{T}},{\widetilde{\alpha }_{T}})$ are provided, respectively, for $(\theta ,\mu )$ and $(\theta ,\alpha )$ based on a continuous-time observation of $\{{X_{t}},\hspace{2.5pt}t\in [0,T]\}$ as $T\to \infty $. The strong consistency and the joint asymptotic distribution of $({\widetilde{\theta }_{T}},{\widetilde{\mu }_{T}})$ and $({\widetilde{\theta }_{T}},{\widetilde{\alpha }_{T}})$ are studied. Moreover, it is obtained that the limit distribution of ${\widetilde{\theta }_{T}}$ is a Cauchy-type distribution, and ${\widetilde{\mu }_{T}}$ and ${\widetilde{\alpha }_{T}}$ are asymptotically normal.
References
Alsenafi, A., Al-Foraih, M., Es-Sebaiy, K.: Least squares estimation for non-ergodic weighted fractional Ornstein-Uhlenbeck process of general parameters (2020). Preprint. arXiv:2002.06861
Basawa, I.V., Scott, D.J.: Asymptotic Optimal Inference for Non-Ergodic Models. Lecture Notes in Statist., vol. 17. Springer, New York (1983). MR0688650
Bajja, S., Es-Sebaiy, K., Viitasaari, L.: Least squares estimator of fractional Ornstein-Uhlenbeck processes with periodic mean. J. Korean Stat. Soc. 46(4), 608–622 (2017). MR3718150. https://doi.org/10.1016/j.jkss.2017.06.002
Bojdecki, T., Gorostiza, L., Talarczyk, A.: Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems. Electron. Commun. Probab. 12, 161–172 (2007). MR2318163. https://doi.org/10.1214/ECP.v12-1272
Chronopoulou, A., Viens, F.: Estimation and pricing under long-memory stochastic volatility. Ann. Finance 8, 379–403 (2012). MR2922802. https://doi.org/10.1007/s10436-010-0156-4
Chronopoulou, A., Viens, F.: Stochastic volatility and option pricing with long-memory in discrete and continuous time. Quant. Finance 12, 635–649 (2012). MR2909603. https://doi.org/10.1080/14697688.2012.664939
Dehling, H., Franke, B., Woerner, J.H.C.: Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean. Stat. Inference Stoch. Process. 1–14 (2016). MR3619570. https://doi.org/10.1007/s11203-016-9136-2
Dietz, H.M., Kutoyants, Y.A.: Parameter estimation for some non-recurrent solutions of SDE. Stat. Decis. 21, 29–46 (2003). MR1985650. https://doi.org/10.1524/stnd.21.1.29.20321
El Machkouri, M., Es-Sebaiy, K., Ouknine, Y.: Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes. J. Korean Stat. Soc. 45, 329–341 (2016). MR3527650. https://doi.org/10.1016/j.jkss.2015.12.001
El Onsy, B., Es-Sebaiy, K., Viens, F.: Parameter Estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise. Stochastics 89(2), 431–468 (2017). MR3590429. https://doi.org/10.1080/17442508.2016.1248967
Es-Sebaiy, K., Alazemi, F., Al-Foraih, M.: Least squares type estimation for discretely observed non-ergodic Gaussian Ornstein-Uhlenbeck processes. Acta Math. Sci. 39(4), 989–1002 (2019). MR4066516. https://doi.org/10.1007/s10473-019-0406-0
Es-Sebaiy, K., Nourdin, I.: Parameter estimation for α-fractional bridges. Springer Proc. Math. Stat. 34, 385–412 (2013). MR3070453. https://doi.org/10.1007/978-1-4614-5906-4_17
Es-Sebaiy, K., Sebaiy M, Es.: Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model. Statistical Methods & Applications 1–28 (2020). https://doi.org/10.1007/s10260-020-00528-4
Hu, Y., Nualart, D., Zhou, H.: Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter. Stat. Inference Stoch. Process. 1–32 (2017). MR3918739. https://doi.org/10.1007/s11203-017-9168-2
Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance 18(6), 933–949 (2018). MR3805308. https://doi.org/10.1080/14697688.2017.1393551
Jacod, J.: Parametric inference for discretely observed non-ergodic diffusions. Bernoulli 12, 383–401 (2006). MR2232724. https://doi.org/10.3150/bj/1151525127
Kleptsyna, M.L., Le Breton, A.: Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat. Inference Stoch. Process. 5(3), 229–248 (2002). MR1943832. https://doi.org/10.1023/A:1021220818545
Marsaglia, G.: Ratios of normal variables and ratios of sums of uniform variables. J. Am. Stat. Assoc. 60, 193–204 (1965). MR0178490. https://doi.org/10.1080/01621459.1965.10480783
Nourdin, I.: Selected Aspects of Fractional Brownian Motion. Bocconi & Springer Series, vol. 4. Springer/Bocconi University Press, Milan (2012). MR3076266. https://doi.org/10.1007/978-88-470-2823-4
Nualart, D.: The Malliavin calculus and related topics (Vol. 1995). Springer, Berlin (2006). MR1344217. https://doi.org/10.1007/978-1-4757-2437-0
Pham-Gia, T., Turkkan, N., Marchand, E.: Density of the ratio of two normal random variables and applications. Commun. Stat., Theory Methods 35(9), 1569–1591 (2006). MR2328495. https://doi.org/10.1080/03610920600683689
Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5(2), 177–188 (1977). https://doi.org/10.1016/0304-405X(77)90016-2
Shimizu, Y.: Notes on drift estimation for certain non-recurrent diffusion from sampled data. Stat. Probab. Lett. 79, 2200–2207 (2009). MR2572052. https://doi.org/10.1016/j.spl.2009.07.015
Young, L.C.: An inequality of the Hölder type connected with Stieltjes integration. Acta Math. 67, 251–282 (1936). MR1555421. https://doi.org/10.1007/BF02401743