Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 8, Issue 3 (2021)
  4. Statistical inference for nonergodic wei ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Statistical inference for nonergodic weighted fractional Vasicek models
Volume 8, Issue 3 (2021), pp. 291–307
Khalifa Es-Sebaiy ORCID icon link to view author Khalifa Es-Sebaiy details   Mishari Al-Foraih   Fares Alazemi  

Authors

 
Placeholder
https://doi.org/10.15559/21-VMSTA176
Pub. online: 26 March 2021      Type: Research Article      Open accessOpen Access

Received
31 December 2020
Revised
2 March 2021
Accepted
2 March 2021
Published
26 March 2021

Abstract

A problem of drift parameter estimation is studied for a nonergodic weighted fractional Vasicek model defined as $d{X_{t}}=\theta (\mu +{X_{t}})dt+d{B_{t}^{a,b}}$, $t\ge 0$, with unknown parameters $\theta >0$, $\mu \in \mathbb{R}$ and $\alpha :=\theta \mu $, whereas ${B^{a,b}}:=\{{B_{t}^{a,b}},t\ge 0\}$ is a weighted fractional Brownian motion with parameters $a>-1$, $|b|<1$, $|b|<a+1$. Least square-type estimators $({\widetilde{\theta }_{T}},{\widetilde{\mu }_{T}})$ and $({\widetilde{\theta }_{T}},{\widetilde{\alpha }_{T}})$ are provided, respectively, for $(\theta ,\mu )$ and $(\theta ,\alpha )$ based on a continuous-time observation of $\{{X_{t}},\hspace{2.5pt}t\in [0,T]\}$ as $T\to \infty $. The strong consistency and the joint asymptotic distribution of $({\widetilde{\theta }_{T}},{\widetilde{\mu }_{T}})$ and $({\widetilde{\theta }_{T}},{\widetilde{\alpha }_{T}})$ are studied. Moreover, it is obtained that the limit distribution of ${\widetilde{\theta }_{T}}$ is a Cauchy-type distribution, and ${\widetilde{\mu }_{T}}$ and ${\widetilde{\alpha }_{T}}$ are asymptotically normal.

References

[1] 
Alsenafi, A., Al-Foraih, M., Es-Sebaiy, K.: Least squares estimation for non-ergodic weighted fractional Ornstein-Uhlenbeck process of general parameters (2020). Preprint. arXiv:2002.06861
[2] 
Basawa, I.V., Scott, D.J.: Asymptotic Optimal Inference for Non-Ergodic Models. Lecture Notes in Statist., vol. 17. Springer, New York (1983). MR0688650
[3] 
Bajja, S., Es-Sebaiy, K., Viitasaari, L.: Least squares estimator of fractional Ornstein-Uhlenbeck processes with periodic mean. J. Korean Stat. Soc. 46(4), 608–622 (2017). MR3718150. https://doi.org/10.1016/j.jkss.2017.06.002
[4] 
Belfadli, Es-Sebaiy K, R., Ouknine, Y.: Parameter estimation for fractional Ornstein-Uhlenbeck processes: non-ergodic case. Front. Sci. Eng. 1(1), 1–16 (2011)
[5] 
Bojdecki, T., Gorostiza, L., Talarczyk, A.: Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems. Electron. Commun. Probab. 12, 161–172 (2007). MR2318163. https://doi.org/10.1214/ECP.v12-1272
[6] 
Chronopoulou, A., Viens, F.: Estimation and pricing under long-memory stochastic volatility. Ann. Finance 8, 379–403 (2012). MR2922802. https://doi.org/10.1007/s10436-010-0156-4
[7] 
Chronopoulou, A., Viens, F.: Stochastic volatility and option pricing with long-memory in discrete and continuous time. Quant. Finance 12, 635–649 (2012). MR2909603. https://doi.org/10.1080/14697688.2012.664939
[8] 
Dehling, H., Franke, B., Woerner, J.H.C.: Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean. Stat. Inference Stoch. Process. 1–14 (2016). MR3619570. https://doi.org/10.1007/s11203-016-9136-2
[9] 
Dietz, H.M., Kutoyants, Y.A.: Parameter estimation for some non-recurrent solutions of SDE. Stat. Decis. 21, 29–46 (2003). MR1985650. https://doi.org/10.1524/stnd.21.1.29.20321
[10] 
El Machkouri, M., Es-Sebaiy, K., Ouknine, Y.: Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes. J. Korean Stat. Soc. 45, 329–341 (2016). MR3527650. https://doi.org/10.1016/j.jkss.2015.12.001
[11] 
El Onsy, B., Es-Sebaiy, K., Viens, F.: Parameter Estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise. Stochastics 89(2), 431–468 (2017). MR3590429. https://doi.org/10.1080/17442508.2016.1248967
[12] 
Es-Sebaiy, K., Alazemi, F., Al-Foraih, M.: Least squares type estimation for discretely observed non-ergodic Gaussian Ornstein-Uhlenbeck processes. Acta Math. Sci. 39(4), 989–1002 (2019). MR4066516. https://doi.org/10.1007/s10473-019-0406-0
[13] 
Es-Sebaiy, K., Nourdin, I.: Parameter estimation for α-fractional bridges. Springer Proc. Math. Stat. 34, 385–412 (2013). MR3070453. https://doi.org/10.1007/978-1-4614-5906-4_17
[14] 
Es-Sebaiy, K., Sebaiy M, Es.: Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model. Statistical Methods & Applications 1–28 (2020). https://doi.org/10.1007/s10260-020-00528-4
[15] 
Hu, Y., Nualart, D., Zhou, H.: Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter. Stat. Inference Stoch. Process. 1–32 (2017). MR3918739. https://doi.org/10.1007/s11203-017-9168-2
[16] 
Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance 18(6), 933–949 (2018). MR3805308. https://doi.org/10.1080/14697688.2017.1393551
[17] 
Jacod, J.: Parametric inference for discretely observed non-ergodic diffusions. Bernoulli 12, 383–401 (2006). MR2232724. https://doi.org/10.3150/bj/1151525127
[18] 
Kleptsyna, M.L., Le Breton, A.: Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat. Inference Stoch. Process. 5(3), 229–248 (2002). MR1943832. https://doi.org/10.1023/A:1021220818545
[19] 
Marsaglia, G.: Ratios of normal variables and ratios of sums of uniform variables. J. Am. Stat. Assoc. 60, 193–204 (1965). MR0178490. https://doi.org/10.1080/01621459.1965.10480783
[20] 
Nourdin, I.: Selected Aspects of Fractional Brownian Motion. Bocconi & Springer Series, vol. 4. Springer/Bocconi University Press, Milan (2012). MR3076266. https://doi.org/10.1007/978-88-470-2823-4
[21] 
Nualart, D.: The Malliavin calculus and related topics (Vol. 1995). Springer, Berlin (2006). MR1344217. https://doi.org/10.1007/978-1-4757-2437-0
[22] 
Pham-Gia, T., Turkkan, N., Marchand, E.: Density of the ratio of two normal random variables and applications. Commun. Stat., Theory Methods 35(9), 1569–1591 (2006). MR2328495. https://doi.org/10.1080/03610920600683689
[23] 
Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5(2), 177–188 (1977). https://doi.org/10.1016/0304-405X(77)90016-2
[24] 
Shimizu, Y.: Notes on drift estimation for certain non-recurrent diffusion from sampled data. Stat. Probab. Lett. 79, 2200–2207 (2009). MR2572052. https://doi.org/10.1016/j.spl.2009.07.015
[25] 
Young, L.C.: An inequality of the Hölder type connected with Stieltjes integration. Acta Math. 67, 251–282 (1936). MR1555421. https://doi.org/10.1007/BF02401743

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2021 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Weighted fractional Vasicek model parameter estimation strong consistency joint asymptotic distribution Young integral

MSC2010
60G15 60G22 62F12 62M09 62M86

Funding
The Project was Funded by Kuwait Foundation for the Advancement of Sciences under project code: PR18-16SM-04.

Metrics
since March 2018
654

Article info
views

552

Full article
views

410

PDF
downloads

128

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy