Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 8, Issue 3 (2021)
  4. Statistical inference for nonergodic wei ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Statistical inference for nonergodic weighted fractional Vasicek models
Volume 8, Issue 3 (2021), pp. 291–307
Khalifa Es-Sebaiy ORCID icon link to view author Khalifa Es-Sebaiy details   Mishari Al-Foraih   Fares Alazemi  

Authors

 
Placeholder
https://doi.org/10.15559/21-VMSTA176
Pub. online: 26 March 2021      Type: Research Article      Open accessOpen Access

Received
31 December 2020
Revised
2 March 2021
Accepted
2 March 2021
Published
26 March 2021

Abstract

A problem of drift parameter estimation is studied for a nonergodic weighted fractional Vasicek model defined as $d{X_{t}}=\theta (\mu +{X_{t}})dt+d{B_{t}^{a,b}}$, $t\ge 0$, with unknown parameters $\theta >0$, $\mu \in \mathbb{R}$ and $\alpha :=\theta \mu $, whereas ${B^{a,b}}:=\{{B_{t}^{a,b}},t\ge 0\}$ is a weighted fractional Brownian motion with parameters $a>-1$, $|b|<1$, $|b|<a+1$. Least square-type estimators $({\widetilde{\theta }_{T}},{\widetilde{\mu }_{T}})$ and $({\widetilde{\theta }_{T}},{\widetilde{\alpha }_{T}})$ are provided, respectively, for $(\theta ,\mu )$ and $(\theta ,\alpha )$ based on a continuous-time observation of $\{{X_{t}},\hspace{2.5pt}t\in [0,T]\}$ as $T\to \infty $. The strong consistency and the joint asymptotic distribution of $({\widetilde{\theta }_{T}},{\widetilde{\mu }_{T}})$ and $({\widetilde{\theta }_{T}},{\widetilde{\alpha }_{T}})$ are studied. Moreover, it is obtained that the limit distribution of ${\widetilde{\theta }_{T}}$ is a Cauchy-type distribution, and ${\widetilde{\mu }_{T}}$ and ${\widetilde{\alpha }_{T}}$ are asymptotically normal.

1 Introduction

The statistical inference of non-ergodic Itô-type diffusions has a long history. For motivation and further references, we refer the reader to Basawa and Scott [2], Dietz and Kutoyants [9], Jacod [17] and Shimizu [24]. On the one hand, the statistical analysis of equations driven by fractional Gaussian processes is obviously more recent. The development of stochastic calculus with respect to the fractional Gaussian processes allowed to study such models. On the other hand, the long range dependence property makes the fractional Gaussian processes important driving noises in modeling several phenomena arising from finance, economic, telecommunication networks and physics.
Let ${B^{a,b}}:=\{{B_{t}^{a,b}},t\ge 0\}$ be a weighted fractional Brownian motion (wfBm) with parameters $(a,b)$ such that $a>-1$, $|b|<1$ and $|b|<a+1$, that is, ${B^{a,b}}$ is defined as a centered Gaussian process starting from zero with covariance
(1)
\[ {R^{a,b}}(t,s)=E\left({B_{t}^{a,b}}{B_{s}^{a,b}}\right)={\int _{0}^{s\wedge t}}{u^{a}}\left[{(t-u)^{b}}+{(s-u)^{b}}\right]du,\hspace{1em}s,t\ge 0.\]
For $a=0$, $-1<b<1$, the wfBm is a fractional Brownian motion (fBm), up to a multiplicative constant $\frac{2}{b+1}$, with the Hurst parameter $\frac{b+1}{2}$. The process ${B^{a,b}}$ was introduced in [5] as an extension of fBm. Moreover, it shares several properties with fBm, such as self-similarity, path continuity, behavior of increments, long-range dependence, nonsemimartingale, and others. But, unlike fBm, the wfBm does not have stationary increments for $a\ne 0$. For more details about the subject, we refer the reader to [5].
The purpose of this paper is to estimate jointly the drift parameters of the weighted fractional Vasicek (also called weighted fractional mean-reverting Ornstein–Uhlenbeck) process $X:=\{{X_{t}},t\ge 0\}$ that is defined as the unique (pathwise) solution to
(2)
\[ {X_{0}}=0,\hspace{2em}d{X_{t}}=\theta \left(\mu +{X_{t}}\right)dt+d{B_{t}^{a,b}},\hspace{1em}t\ge 0,\]
where $\theta >0$ and $\mu \in \mathbb{R}$ are considered as unknown parameters. When $a=b=0$, ${B^{a,b}}$ is a standard Brownian motion, and in this case the model (2) with $\mu =0$ was originally proposed by Ornstein and Uhlenbeck and then it was generalized by Vasicek, see [23].
In recent years, several researchers have been interested in studying statistical estimation problems for Gaussian Ornstein–Uhlenbeck processes. Estimation of the drift parameters in fractional-noise-driven Ornstein–Uhlenbeck processes is a problem that is both well-motivated by practical needs and theoretically challenging. In the finance context, our practical motivation to study this estimation problem is to provide tools to understand volatility modeling in finance. Indeed, any mean-reverting model in discrete or continuous time can be taken as a model for stochastic volatility. Let us mention some important results in this field where the volatility exhibits long-memory, which means that the volatility today is correlated to past volatility values with a dependence that decays very slowly. The authors of [6, 7] considered the problem of option pricing under a stochastic volatility model that exhibits long-range dependence. More precisely they assumed that the dynamics of the volatility are described by the equation (2), where the driving process ${B^{a,b}}$ is a standard fractional Brownian motion (corresponding to $a=0$) with the Hurst parameter $H=\frac{b+1}{2}$ greater than $1/2$. On the other hand, the paper [16] on rough volatility contends that the short-time behavior indicates that the Hurst parameter H in the volatility is less than $1/2$.
An example of interesting problem related to (2) is the statistical estimation of μ and θ when one observes the whole trajectory of X. In order to estimate the unknown parameters θ and μ when the whole trajectory of X defined in (2) is observed, we will consider the following least squares estimators (LSEs) proposed in [14]:
(3)
\[ {\widetilde{\theta }_{T}}=\frac{\frac{1}{2}T{X_{T}^{2}}-{X_{T}}{\textstyle\textstyle\int _{0}^{T}}{X_{s}}ds}{T{\textstyle\textstyle\int _{0}^{T}}{X_{s}^{2}}ds-{\left({\textstyle\textstyle\int _{0}^{T}}{X_{s}}ds\right)^{2}}}\]
and
(4)
\[ {\widetilde{\alpha }_{T}}=\frac{{X_{T}}{\textstyle\textstyle\int _{0}^{T}}{X_{s}^{2}}ds-\frac{1}{2}{X_{T}^{2}}{\textstyle\textstyle\int _{0}^{T}}{X_{s}}ds}{T{\textstyle\textstyle\int _{0}^{T}}{X_{s}^{2}}ds-{\left({\textstyle\textstyle\int _{0}^{T}}{X_{s}}ds\right)^{2}}},\]
as statistics to estimate θ and $\alpha :=\mu \theta $, respectively. Furthermore, we can obtain a least squares-type estimator ${\widetilde{\mu }_{T}}$ for μ, that is, the statistic
(5)
\[ {\widetilde{\mu }_{T}}={\widetilde{\alpha }_{T}}/{\widetilde{\theta }_{T}}=\frac{{\textstyle\textstyle\int _{0}^{T}}{X_{s}^{2}}ds-\frac{1}{2}{X_{T}}{\textstyle\textstyle\int _{0}^{T}}{X_{s}}ds}{\frac{1}{2}T{X_{T}}-{\textstyle\textstyle\int _{0}^{T}}{X_{s}}ds}.\]
Let us mention that similar drift statistical problems for nonergodic Vasicek models were recently studied. The work [14] studied the case when the process ${B^{a,b}}$ in (2) is replaced by a Gaussian process, and provided sufficient conditions on the driving Gaussian process in order to ensure the strong consistency and the asymptotic distribution of the estimators given by (3), (4) and (5). Note that we cannot apply directly this result here, because ${B^{a,b}}$ verifies properties different of those given in [14].
Let us also describe what is known about the parameter estimation for the model (2) when ${B^{a,b}}$ is a fBm, i.e., $a=0$, with the Hurst parameter $H=\frac{b+1}{2}$. Let ${B^{H}}:=\left\{{B_{t}^{H}},t\ge 0\right\}$ denote a fBm with the Hurst parameter $H\in (0,1)$. Consider the following fractional Vasicek model driven by ${B^{H}}$,
(6)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle d{X_{t}}& \displaystyle =& \displaystyle \theta \left(\mu +{X_{t}}\right)dt+d{B_{t}^{H}},\hspace{2.5pt}\hspace{2.5pt}{X_{0}}=0,\end{array}\]
where $\theta ,\hspace{2.5pt}\mu \in \mathbb{R}$ are unknown parameters. Notice that the process (6) is ergodic if $\theta <0$, $\mu =0$ and ${X_{0}}={\textstyle\int _{-\infty }^{0}}{e^{-\theta s}}d{B_{s}^{H}}$. Otherwise, the process (6) is nonergodic if $\theta >0$.
Now we recall several approaches to estimate the parameters of (6). For the maximum likelihood estimation approach, in general the techniques used to construct maximum likelihood estimators (MLEs) for the drift parameters of (6) are based on Girsanov transforms for fBm and depend on the properties of the deterministic fractional operators (determined by the Hurst parameter) related to the fBm. In general, the MLE is not easily computable. In particular, it relies on being able to constitute a discretization of an MLE. For a more recent comprehensive discussion via this method, we refer to [18].
A least squares approach has been also considered by several researchers to study statistical estimation problems for (6). Let us mention some works in this direction: in the case when $\theta <0$, the statistical estimation for the parameters μ and θ based on continuous-time observations of $\{{X_{t}},\hspace{2.5pt}t\in [0,T]\}$ as $T\to \infty $, has been studied by several papers, for instance [8, 3] and the references therein. When $\mu =0$ in (6), the estimation of θ has been investigated by using least squares method as follows: the case of ergodic-type fractional Ornstein–Uhlenbeck processes, corresponding to $\theta <0$, has been considered in [11, 15], and the case nonergodic fractional Ornstein–Uhlenbeck processes has been studied in [10, 12].
The paper is organized as follows. In Section 2 we analyze some pathwise properties of the Vasicek model (2). In Section 3 we prove the strong consistency of the estimators ${\widetilde{\theta }_{T}}$, ${\widetilde{\mu }_{T}}$ and ${\widetilde{\alpha }_{T}}$ as $T\to \infty $. Section 4 is devoted to analyze the joint asymptotic distribution of the LSEs $({\widetilde{\theta }_{T}},{\widetilde{\mu }_{T}})$ and $({\widetilde{\theta }_{T}},{\widetilde{\alpha }_{T}})$ as $T\to \infty $.
Throughout the paper, we shall use notation C for various constants whose value is not important and may change from line to line and even in the same line.

2 Notations and auxiliary results

This section is devoted to study pathwise properties of the nonergodic weighted fractional Vasicek model (2). These properties will be needed in order to analyze the asymptotic behavior of the LSEs $({\widetilde{\theta }_{T}},{\widetilde{\mu }_{T}})$ and $({\widetilde{\theta }_{T}},{\widetilde{\alpha }_{T}})$.
Because (2) is linear, it is immediate to solve it explicitly; one then gets the following formula
(7)
\[ {X_{t}}=\mu \left({e^{\theta t}}-1\right)+{e^{\theta t}}{\int _{0}^{t}}{e^{-\theta s}}d{B_{s}^{a,b}},\hspace{1em}t\ge 0,\]
where the integral with respect to ${B^{a,b}}$ is understood in the Young sense (see Appendix).
Let us introduce the following processes, for every $t\ge 0$:
(8)
\[ {\zeta _{t}}:={\int _{0}^{t}}{e^{-\theta s}}d{B_{s}^{a,b}},\hspace{1em}{Z_{t}}:={\int _{0}^{t}}{e^{-\theta s}}{B_{s}^{a,b}}ds,\hspace{1em}{\Sigma _{t}}:={\int _{0}^{t}}{X_{s}}ds.\]
Thus, using (7), we can write
(9)
\[ {X_{t}}=\mu \left({e^{\theta t}}-1\right)+{e^{\theta t}}{\zeta _{t}}.\]
Furthermore, by (2),
(10)
\[ {X_{t}}=\mu \theta t+\theta {\Sigma _{t}}+{B_{t}^{a,b}}.\]
Moreover, applying the formula (49), we have
(11)
\[ {\zeta _{t}}={e^{-\theta t}}{B_{t}^{a,b}}+\theta {\int _{0}^{t}}{e^{-\theta s}}{B_{s}^{a,b}}ds={e^{-\theta t}}{B_{t}^{a,b}}+\theta {Z_{t}}.\]
Lemma 1 ([1]).
Suppose that $a>-1$, $|b|<1$ and $|b|<a+1$. Then, we can rewrite the covariance ${R^{a,b}}(t,s)$ of ${B^{a,b}}$, given in (1), as follows:
(12)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {R^{a,b}}(t,s)& \displaystyle =& \displaystyle \beta \left(a+1,b+1\right)\left[{t^{a+b+1}}+{s^{a+b+1}}\right]-m(t,s),\end{array}\]
where $\beta (c,d)={\textstyle\int _{0}^{1}}{x^{c-1}}{(1-x)^{d-1}}dx$, $c>0$, $d>0$, denotes the usual Beta function, and the function $m(t,s)$ is defined by
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle m(t,s)& \displaystyle :=& \displaystyle {\int _{s\wedge t}^{s\vee t}}{u^{a}}{(t\vee s-u)^{b}}du.\end{array}\]
There exists a constant C depending only on $a,b$, such that for every $s,t\ge 0$,
(13)
\[ E\left[{\left({B_{t}^{a,b}}-{B_{s}^{a,b}}\right)^{2}}\right]\le C{(s\vee t)^{a}}|t-s{|^{b+1}}.\]
Since the process ${B^{a,b}}$ has $((a+b+1)\wedge (b+1)-\varepsilon )$-Hölder continuous paths for all $\varepsilon \in (0,(a+b+1)\wedge (b+1))$, and $E\left[{({B_{t}^{a,b}})^{2}}\right]=2\beta \left(a+1,b+1\right){t^{a+b+1}}$, we can deduce from [10, Lemma 2.1] and [10, Lemma 2.2] the following result.
Lemma 2.
Assume that $a>-1$, $|b|<1$ and $|b|<a+1$. Let Z and ζ be given by (8). Then for all $\varepsilon \in (0,(a+b+1)\wedge (b+1))$ the process ζ admits a modification with $((a+b+1)\wedge (b+1)-\varepsilon )$-Hölder continuous paths, still denoted ζ in the sequel.
Moreover,
(14)
\[ {Z_{T}}\longrightarrow {Z_{\infty }}:={\int _{0}^{\infty }}{e^{-\theta s}}{B_{s}^{a,b}}ds,\hspace{2em}{\zeta _{T}}\longrightarrow {\zeta _{\infty }}:=\theta {Z_{\infty }}\]
almost surely and in ${L^{2}}(\Omega )$ as $T\to \infty $.
Also,
(15)
\[ \underset{T\to \infty }{\lim }{e^{-2\theta T}}{\int _{0}^{T}}{e^{2\theta s}}{\zeta _{s}^{2}}ds=\frac{1}{2\theta }{\zeta _{\infty }^{2}}\hspace{2.5pt}\hspace{2.5pt}\textit{almost surely.}\]
We will make use of the following two technical lemmas.
Lemma 3.
Suppose that $a>-1$, $|b|<1$ and $|b|<a+1$. Then, almost surely, as $T\to \infty $,
(16)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \frac{{B_{T}^{a,b}}}{{T^{\delta }}}\longrightarrow 0\hspace{1em}\hspace{2.5pt}\textit{for all}\hspace{2.5pt}\delta >\frac{a+b+1}{2},\end{array}\]
(17)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle {e^{-\theta T}}{X_{T}}\longrightarrow \mu +{\zeta _{\infty }},\end{array}\]
(18)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle {e^{-\theta T}}{\int _{0}^{T}}{X_{s}}ds\longrightarrow \frac{1}{\theta }\left(\mu +{\zeta _{\infty }}\right),\end{array}\]
(19)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \frac{{e^{-\theta T}}}{T}{\int _{0}^{T}}s{X_{s}}ds\longrightarrow \frac{1}{\theta }\left(\mu +{\zeta _{\infty }}\right),\end{array}\]
(20)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle {e^{-2\theta T}}{\int _{0}^{T}}{X_{s}^{2}}ds\longrightarrow \frac{1}{2\theta }{\left(\mu +{\zeta _{\infty }}\right)^{2}},\end{array}\]
(21)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \frac{{e^{-\theta T}}}{{T^{\delta }}}{\int _{0}^{T}}|{X_{s}}|ds\longrightarrow 0\hspace{1em}\textit{for any}\hspace{2.5pt}\delta >0,\end{array}\]
(22)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \frac{{e^{-\theta T}}}{T}{\int _{0}^{T}}|{B_{t}^{a,b}}{X_{t}}|dt\longrightarrow 0\hspace{1em}\textit{if}\hspace{2.5pt}a+b<1,\end{array}\]
where ${\zeta _{\infty }}$ is defined in Lemma 2.
Proof.
Let us prove (16). Let $\delta >\frac{a+b+1}{2}$. By the Borel–Cantelli lemma, it is sufficient to prove that, for any $\varepsilon >0$,
\[ \sum \limits_{n\ge 0}P\left(\underset{n\le T\le n+1}{\sup }\left|\frac{{B_{T}^{a,b}}}{{T^{\delta }}}\right|>\varepsilon \right)<\infty .\]
Let $q>0$ such that $q(\delta -\frac{a+b+1}{2})>1$ and $\frac{q(b+1)}{2}>1$. Applying Markov’s inequality, we obtain
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle P\left(\underset{n\le T\le n+1}{\sup }\left|\frac{{B_{T}^{a,b}}}{{T^{\delta }}}\right|>\varepsilon \right)& \displaystyle \le & \displaystyle \frac{1}{{\varepsilon ^{q}}}E\left[\underset{n\le T\le n+1}{\sup }{\left|\frac{{B_{T}^{a,b}}}{{T^{\delta }}}\right|^{q}}\right]\\ {} & \displaystyle \le & \displaystyle \frac{1}{{\varepsilon ^{q}}{n^{q\delta }}}E\left[\underset{n\le T\le n+1}{\sup }{\left|{B_{T}^{a,b}}\right|^{q}}\right].\end{array}\]
Further, applying the Garsia–Rodemich–Rumsey Lemma (see [21, Lemma A.3.1]) for $\psi (x)={x^{q}}$, $p(x)={x^{\frac{m+2}{q}}}$, with $0<m<\frac{q(b+1)}{2}-1$, we get for every $n\le s,t\le n+1$,
\[ {\left|{B_{t}^{a,b}}-{B_{s}^{a,b}}\right|^{q}}\le C{\left|t-s\right|^{m}}{\int _{n}^{n+1}}{\int _{n}^{n+1}}\frac{{\left|{B_{u}^{a,b}}-{B_{v}^{a,b}}\right|^{q}}}{{\left|u-v\right|^{m+2}}}dudv.\]
This together with (13) implies
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle E\left[\underset{n\le s,t\le n+1}{\sup }{\left|{B_{t}^{a,b}}-{B_{s}^{a,b}}\right|^{q}}\right]& \displaystyle \le & \displaystyle C{\int _{n}^{n+1}}{\int _{n}^{n+1}}{(u\vee v)^{\frac{qa}{2}}}\frac{{\left|u-v\right|^{\frac{q(b+1)}{2}}}}{{\left|u-v\right|^{m+2}}}dudv\\ {} & \displaystyle \le & \displaystyle C{n^{\frac{qa}{2}}}{\int _{0}^{1}}{\int _{0}^{1}}{\left|x-y\right|^{\frac{q(b+1)}{2}-m-2}}dxdy\\ {} & \displaystyle \le & \displaystyle C{n^{\frac{qa}{2}}}.\end{array}\]
Hence,
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle E\left[\underset{n\le T\le n+1}{\sup }{\left|{B_{T}^{a,b}}\right|^{q}}\right]& \displaystyle \le & \displaystyle C\left(E\left[\underset{n\le T\le n+1}{\sup }{\left|{B_{T}^{a,b}}-{B_{n}^{a,b}}\right|^{q}}\right]+E{\left|{B_{n}^{a,b}}\right|^{q}}\right)\\ {} & \displaystyle \le & \displaystyle C\left(E\left[\underset{n\le s,t\le n+1}{\sup }{\left|{B_{t}^{a,b}}-{B_{s}^{a,b}}\right|^{q}}\right]+{n^{\frac{q(a+b+1)}{2}}}\right)\\ {} & \displaystyle \le & \displaystyle C\left({n^{\frac{qa}{2}}}+{n^{\frac{q(a+b+1)}{2}}}\right)\\ {} & \displaystyle \le & \displaystyle C{n^{\frac{q(a+b+1)}{2}}}.\end{array}\]
Then,
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle P\left(\underset{n\le T\le n+1}{\sup }\left|\frac{{B_{T}^{a,b}}}{{T^{\delta }}}\right|>\varepsilon \right)& \displaystyle \le & \displaystyle \frac{C}{{\varepsilon ^{q}}{n^{q(\delta -\frac{a+b+1}{2})}}}.\end{array}\]
As a consequence, since $q(\delta -\frac{a+b+1}{2})>1$, the above series converges, which proves (16).
Notice that the convergence (17) is a direct consequence of (9) and (14).
On the other hand, using (49), (14) and (16) we have almost surely as $T\to \infty $,
(23)
\[ {e^{-\theta T}}{\int _{0}^{T}}{e^{\theta s}}{Z_{s}}ds=\frac{{Z_{T}}}{\theta }-\frac{{e^{-\theta T}}}{\theta }{\int _{0}^{T}}{B_{s}^{a,b}}ds\longrightarrow \frac{{\zeta _{\infty }}}{{\theta ^{2}}}.\]
Combining (9), (11) and (23), we get almost surely as $T\to \infty $,
\[ {e^{-\theta T}}{\int _{0}^{T}}{X_{s}}ds={e^{-\theta T}}{\int _{0}^{T}}\left(\mu ({e^{\theta s}}-1)+{B_{s}^{a,b}}+\theta {e^{\theta s}}{Z_{s}}\right)ds\longrightarrow \frac{1}{\theta }\left(\mu +{\zeta _{\infty }}\right),\]
which proves (18). Similarly, (49), (14), (16) and (23) imply that almost surely as $T\to \infty $,
\[ \frac{{e^{-\theta T}}}{T}{\int _{0}^{T}}s{e^{\theta s}}{Z_{s}}ds=\frac{{Z_{T}}}{\theta }-\frac{{e^{-\theta T}}}{\theta T}{\int _{0}^{T}}s{B_{s}^{a,b}}ds-\frac{{e^{-\theta T}}}{\theta T}{\int _{0}^{T}}{e^{\theta s}}{Z_{s}}ds\longrightarrow \frac{{\zeta _{\infty }}}{{\theta ^{2}}}.\]
Combined with (9) and (11), a straightforward calculation as above, leads to (19).
Using similar arguments as in (23), we deduce that almost surely as $T\to \infty $,
\[ {e^{-2\theta T}}{\int _{0}^{T}}{e^{2\theta s}}{Z_{s}}ds\longrightarrow \frac{{\zeta _{\infty }}}{2{\theta ^{2}}}.\]
Combining this latter convergence together with (9), (14), (15) and (16), we can deduce (20).
Using (17), we have almost surely as $T\to \infty $,
\[ \frac{{e^{-\theta T}}}{{T^{\delta }}}{\int _{0}^{T}}|{X_{s}}|ds\le \underset{t\ge 0}{\sup }\left|\frac{{X_{t}}}{{e^{\theta t}}}\right|\frac{{e^{-\theta T}}}{{T^{\delta }}}{\int _{0}^{T}}{e^{\theta s}}ds\longrightarrow 0,\]
which implies (21).
Now we prove (22). Let $\frac{a+b+1}{2}<\delta <1$,
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle \frac{{e^{-\theta T}}}{T}{\int _{0}^{T}}|{B_{t}^{a,b}}{X_{t}}|dt& \displaystyle \le & \displaystyle \underset{t\ge 0}{\sup }\left|\frac{{B_{t}^{a,b}}{X_{t}}}{{t^{\delta }}{e^{\theta t}}}\right|\frac{{e^{-\theta T}}}{T}{\int _{0}^{T}}{t^{\delta }}{e^{\theta t}}dt\\ {} & \displaystyle \le & \displaystyle \underset{t\ge 0}{\sup }\left|\frac{{B_{t}^{a,b}}{X_{t}}}{{t^{\delta }}{e^{\theta t}}}\right|\frac{{e^{-\theta T}}}{{T^{1-\delta }}}{\int _{0}^{T}}{e^{\theta t}}dt\\ {} & \displaystyle \le & \displaystyle \underset{t\ge 0}{\sup }\left|\frac{{B_{t}^{a,b}}{X_{t}}}{{t^{\delta }}{e^{\theta t}}}\right|\frac{1}{\theta {T^{1-\delta }}}\\ {} & & \displaystyle \longrightarrow 0\end{array}\]
almost surely as $T\to \infty $, where we used that ${\sup _{t\ge 0}}\left|\frac{{B_{t}^{a,b}}{X_{t}}}{{t^{\delta }}{e^{\theta t}}}\right|<\infty $ almost surely, thanks to (16) and (17). Thus the proof of (22) is done.  □

3 Strong consistency

In this section we will prove the strong consistency of the estimators ${\widetilde{\theta }_{T}}$, ${\widetilde{\mu }_{T}}$ and ${\widetilde{\alpha }_{T}}$.
Theorem 1.
Suppose that $a>-1$, $|b|<1$ and $|b|<a+1$. Let ${\widetilde{\theta }_{T}}$, ${\widetilde{\alpha }_{T}}$ and ${\widetilde{\mu }_{T}}$ be given by (3), (4) and (5), respectively. Then, almost surely, as $T\to \infty $,
(24)
\[ {\widetilde{\theta }_{T}}\longrightarrow \theta .\]
Moreover, if $a+b<1$,
(25)
\[ {\widetilde{\mu }_{T}}\longrightarrow \mu ,\]
and consequently,
\[ {\widetilde{\alpha }_{T}}={\widetilde{\mu }_{T}}{\widetilde{\theta }_{T}}\longrightarrow \alpha =\mu \theta \]
almost surely, as $T\to \infty $.
Proof.
Combining (3) and the convergences (17), (20) and (21), we obtain
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {\widetilde{\theta }_{T}}& \displaystyle =& \displaystyle \frac{\frac{1}{2}{\left({e^{-\theta T}}{X_{T}}\right)^{2}}-{e^{-\theta T}}{X_{T}}\frac{{e^{-\theta T}}}{T}{\textstyle\textstyle\int _{0}^{T}}{X_{s}}ds}{{e^{-2\theta T}}{\textstyle\textstyle\int _{0}^{T}}{X_{s}^{2}}ds-{\left(\frac{{e^{-\theta T}}}{\sqrt{T}}{\textstyle\textstyle\int _{0}^{T}}{X_{s}}ds\right)^{2}}}\\ {} & & \displaystyle \longrightarrow \theta ,\hspace{1em}\text{almost surely, as}\hspace{2.5pt}T\to \infty .\end{array}\]
Thus the convergence (24) is obtained.
Now we prove (25). It follows from (5) that ${\widetilde{\mu }_{T}}$ can be written as follows:
\[ {\widetilde{\mu }_{T}}=\frac{{e^{-\theta T}}}{T}\left[{\int _{0}^{T}}{X_{s}^{2}}ds-\frac{{X_{T}}}{2}{\int _{0}^{T}}{X_{s}}ds\right]\times \frac{1}{\frac{1}{2}{e^{-\theta T}}{X_{T}}-\frac{{e^{-\theta T}}}{T}{\textstyle\textstyle\int _{0}^{T}}{X_{s}}ds}.\]
According to the convergences (17) and (21) we have, almost surely, as $T\to \infty $,
\[ \frac{1}{\frac{1}{2}{e^{-\theta T}}{X_{T}}-\frac{{e^{-\theta T}}}{T}{\textstyle\textstyle\int _{0}^{T}}{X_{s}}ds}\longrightarrow \frac{2}{\mu +{\zeta _{\infty }}}.\]
Therefore, it remains to prove
(26)
\[ \frac{{e^{-\theta T}}}{T}\left[{\int _{0}^{T}}{X_{s}^{2}}ds-\frac{{X_{T}}}{2}{\int _{0}^{T}}{X_{s}}ds\right]\longrightarrow \frac{\mu }{2}\left(\mu +{\zeta _{\infty }}\right)\]
almost surely, as $T\to \infty $.
Using the formula (49) and the equation (2), we have
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle {\int _{0}^{T}}{X_{s}^{2}}ds-\frac{{X_{T}}}{2}{\int _{0}^{T}}{X_{s}}ds\\ {} & \displaystyle =& \displaystyle {\int _{0}^{T}}{X_{s}}d{\Sigma _{s}}-\frac{1}{2}\left(\mu \theta T+\theta {\Sigma _{T}}+{B_{T}^{a,b}}\right){\Sigma _{T}}\\ {} & \displaystyle =& \displaystyle {\int _{0}^{T}}\left(\mu \theta s+\theta {\Sigma _{s}}+{B_{s}^{a,b}}\right)d{\Sigma _{s}}-\frac{\mu \theta }{2}T{\Sigma _{T}}-\frac{\theta }{2}{\Sigma _{T}^{2}}-\frac{1}{2}{B_{T}^{a,b}}{\Sigma _{T}}\\ {} & \displaystyle =& \displaystyle \mu \theta {\int _{0}^{T}}s{X_{s}}ds+\frac{\theta }{2}{\Sigma _{T}^{2}}+{\int _{0}^{T}}{B_{s}^{a,b}}d{\Sigma _{s}}-\frac{\mu \theta }{2}T{\Sigma _{T}}-\frac{\theta }{2}{\Sigma _{T}^{2}}-\frac{1}{2}{B_{T}^{a,b}}{\Sigma _{T}}\\ {} & \displaystyle =& \displaystyle \left(\mu \theta {\int _{0}^{T}}s{X_{s}}ds-\frac{\mu \theta }{2}T{\Sigma _{T}}\right)+\left({\int _{0}^{T}}{B_{s}^{a,b}}d{\Sigma _{s}}-\frac{1}{2}{B_{T}^{a,b}}{\Sigma _{T}}\right)\\ {} & \displaystyle =:& \displaystyle {I_{T}}+{J_{T}}.\end{array}\]
Moreover, by L’Hôpital’s rule and (17) we have
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle \frac{{e^{-\theta T}}}{T}{I_{T}}& \displaystyle =& \displaystyle \frac{{e^{-\theta T}}}{T}\left(\mu \theta {\int _{0}^{T}}s{X_{s}}ds-\frac{\mu \theta }{2}T{\Sigma _{T}}\right)\\ {} & & \displaystyle \longrightarrow \frac{\mu }{2}\left(\mu +{\zeta _{\infty }}\right)\end{array}\]
almost surely, as $T\to \infty $.
On the other hand, taking $\frac{a+b+1}{2}<\delta <1$,
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle \frac{{e^{-\theta T}}}{T}|{J_{T}}|& \displaystyle =& \displaystyle \frac{{e^{-\theta T}}}{T}\left|{\int _{0}^{T}}{B_{s}^{a,b}}d{\Sigma _{s}}-\frac{1}{2}{B_{T}^{a,b}}{\Sigma _{T}}\right|\\ {} & \displaystyle =& \displaystyle \frac{{e^{-\theta T}}}{T}\left|{\int _{0}^{T}}{B_{s}^{a,b}}{X_{s}}ds-\frac{1}{2}{B_{T}^{a,b}}{\Sigma _{T}}\right|\\ {} & \displaystyle \le & \displaystyle \frac{3}{2}\left(\underset{s\ge 0}{\sup }\left|\frac{{B_{s}^{a,b}}}{{s^{\delta }}}\right|\right)\frac{{e^{-\theta T}}}{{T^{1-\delta }}}{\int _{0}^{T}}|{X_{s}}|ds\\ {} & \displaystyle \longrightarrow & \displaystyle 0\end{array}\]
almost surely, as $T\to \infty $, where we used (16) and (21).
Consequently, the convergence (26) is proved. Thus the desired results are obtained.  □

4 Joint asymptotic distribution

In this section we analyze the joint asymptotic distribution of the LSEs $({\widetilde{\theta }_{T}},{\widetilde{\mu }_{T}})$ and $({\widetilde{\theta }_{T}},{\widetilde{\alpha }_{T}})$.
Lemma 4.
Suppose that $a>-1$, $|b|<1$ and $|b|<a+1$. Then
  • 1) The limit of the variance of ${T^{-\frac{a}{2}}}{e^{-\theta T}}{\textstyle\int _{0}^{T}}{e^{\theta s}}d{B_{s}^{a,b}}$ exists as $T\to \infty $. More precisely,
    (27)
    \[ \underset{T\to \infty }{\lim }E\left[{\left({T^{-\frac{a}{2}}}{e^{-\theta T}}{\int _{0}^{T}}{e^{\theta s}}d{B_{s}^{a,b}}\right)^{2}}\right]\longrightarrow \frac{\Gamma (b+1)}{{\theta ^{b+1}}}.\]
  • 2) For all fixed $s\ge 0$,
    (28)
    \[ \underset{T\to \infty }{\lim }E\left({B_{s}^{a,b}}{T^{-\frac{a}{2}}}{e^{-\theta T}}{\int _{0}^{T}}{e^{\theta r}}d{B_{r}^{a,b}}\right)=0.\]
  • 3) For all fixed $s\ge 0$, as $T\longrightarrow \infty $
    (29)
    \[ \frac{E\left[{B_{s}^{a,b}}{B_{T}^{a,b}}\right]}{{T^{\frac{a+b+1}{2}}}}\longrightarrow 0,\hspace{1em}E\left[\frac{{B_{T}^{a,b}}}{{T^{\frac{a+b+1}{2}}}}{T^{-\frac{a}{2}}}{e^{-\theta T}}{\int _{0}^{T}}{e^{\theta r}}d{B_{r}^{a,b}}\right]\longrightarrow 0.\]
Proof.
Both convergences (27) and (28) are proved in [1]. Let us now prove the convergences given in (29). Fix $s\ge 0$. Using (12), and $b-a-1<0$ and change of variables $x=u/T$, we get
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \underset{T\to \infty }{\lim }\frac{E\left[{B_{s}^{a,b}}{B_{T}^{a,b}}\right]}{{T^{\frac{a+b+1}{2}}}}\\ {} & \displaystyle =& \displaystyle \underset{T\to \infty }{\lim }{T^{\frac{-a-b-1}{2}}}\left[\beta \left(a+1,b+1\right)\left[{s^{a+b+1}}+{T^{a+b+1}}\right]-m(s,T)\right]\\ {} & \displaystyle =& \displaystyle \underset{T\to \infty }{\lim }{T^{\frac{-a-b-1}{2}}}\left[\beta \left(a+1,b+1\right){T^{a+b+1}}-{\int _{s}^{T}}{u^{a}}{(T-u)^{b}}du\right]\\ {} & \displaystyle =& \displaystyle \underset{T\to \infty }{\lim }{T^{\frac{-a-b-1}{2}}}\left[-{\int _{0}^{T}}{u^{a}}{(T-u)^{b}}du+{\int _{0}^{s}}{u^{a}}{(T-u)^{b}}du\right]\\ {} & \displaystyle =& \displaystyle \underset{T\to \infty }{\lim }{T^{\frac{-a-b-1}{2}}}\left[-{T^{a+b+1}}{\int _{0}^{1}}{x^{a}}{(1-x)^{b}}dx+{\int _{0}^{s}}{u^{a}}{(T-u)^{b}}du\right]\\ {} & \displaystyle =& \displaystyle \underset{T\to \infty }{\lim }{T^{\frac{-a-b-1}{2}}}{\int _{0}^{s}}{u^{a}}{(T-u)^{b}}du.\end{array}\]
Furthermore,
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {T^{\frac{-a-b-1}{2}}}{\int _{0}^{s}}{u^{a}}{(T-u)^{b}}du& \displaystyle =& \displaystyle {T^{\frac{b-a-1}{2}}}{\int _{0}^{s}}{u^{a}}{\left(1-\frac{u}{T}\right)^{b}}du\\ {} & \displaystyle \le & \displaystyle \left\{\begin{array}{l@{\hskip10.0pt}l}{T^{\frac{b-a-1}{2}}}{\textstyle\textstyle\int _{0}^{s}}{u^{a}}du& \hspace{2.5pt}\text{if}\hspace{2.5pt}b\ge 0,\\ {} {T^{\frac{b-a-1}{2}}}{\textstyle\textstyle\int _{0}^{s}}{u^{a}}{\left(1-\frac{s}{T}\right)^{b}}du& \hspace{2.5pt}\text{if}\hspace{2.5pt}b<0\end{array}\right.\\ {} & \displaystyle \longrightarrow & \displaystyle 0.\end{array}\]
Thus, we deduce that, for all fixed $s\ge 0$,
\[ \underset{T\to \infty }{\lim }\frac{E\left[{B_{s}^{a,b}}{B_{T}^{a,b}}\right]}{{T^{\frac{a+b+1}{2}}}}=0.\]
In order to complete the proof, we show that
(30)
\[ \underset{T\to \infty }{\lim }E\left[\frac{{B_{T}^{a,b}}}{{T^{\frac{a+b+1}{2}}}}{T^{-\frac{a}{2}}}{e^{-\theta T}}{\int _{0}^{T}}{e^{\theta r}}d{B_{r}^{a,b}}\right]=0.\]
Applying twice (49), we can write
(31)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle E\left[\frac{{B_{T}^{a,b}}}{{T^{\frac{a+b+1}{2}}}}{T^{-\frac{a}{2}}}{e^{-\theta T}}{\int _{0}^{T}}{e^{\theta r}}d{B_{r}^{a,b}}\right]\end{array}\]
(32)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& \displaystyle =& \displaystyle {T^{-a-\frac{b+1}{2}}}\left[{R^{a,b}}(T,T)-\theta {e^{-\theta T}}{\int _{0}^{T}}{e^{\theta r}}{R^{a,b}}(T,r)dr\right]\\ {} & \displaystyle =& \displaystyle {T^{-a-\frac{b+1}{2}}}{e^{-\theta T}}{\int _{0}^{T}}{e^{\theta r}}\beta (a+1,b+1)(a+b+1){r^{a+b}}dr\\ {} & & \displaystyle -{T^{-a-\frac{b+1}{2}}}{e^{-\theta T}}{\int _{0}^{T}}{e^{\theta r}}\frac{\partial m(T,r)}{\partial r}dr\\ {} & \displaystyle =& \displaystyle (a+b+1)\beta (a+1,b+1){T^{-a-\frac{b+1}{2}}}{e^{-\theta T}}{\int _{0}^{T}}{e^{\theta r}}{r^{a+b}}dr\\ {} & & \displaystyle +{T^{-a-\frac{b+1}{2}}}{e^{-\theta T}}{\int _{0}^{T}}{e^{\theta r}}{r^{a}}{(T-r)^{b}}dr.\end{array}\]
Moreover, applying L’Hôspital’s rule, we get
(33)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \underset{T\to \infty }{\lim }{T^{-a-\frac{b+1}{2}}}{e^{-\theta T}}{\int _{0}^{T}}{e^{\theta r}}{r^{a+b}}dr\end{array}\]
(34)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& \displaystyle =& \displaystyle \underset{T\to \infty }{\lim }\frac{{e^{\theta T}}{T^{a+b}}}{{e^{\theta T}}\left[(a+\frac{b+1}{2}){T^{a+\frac{b-1}{2}}}+\theta {T^{a+\frac{b+1}{2}}}\right]}\\ {} & \displaystyle =& \displaystyle \underset{T\to \infty }{\lim }\frac{1}{(a+\frac{b+1}{2}){T^{\frac{-b-1}{2}}}+\theta {T^{\frac{1-b}{2}}}}\\ {} & \displaystyle =& \displaystyle 0,\end{array}\]
since $|b|<1$. Also, using change of variables $x=r/T$ and $y=T-r$, we have
(35)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle {T^{-a-\frac{b+1}{2}}}{e^{-\theta T}}{\int _{0}^{T}}{e^{\theta r}}{r^{a}}{(T-r)^{b}}dr\\ {} & \displaystyle =& \displaystyle {T^{-a-\frac{b+1}{2}}}{e^{-\theta T}}\left[{\int _{0}^{T/2}}{e^{\theta r}}{r^{a}}{(T-r)^{b}}dr+{\int _{T/2}^{T}}{e^{\theta r}}{r^{a}}{(T-r)^{b}}dr\right]\\ {} & \displaystyle \le & \displaystyle {T^{-a-\frac{b+1}{2}}}{e^{-\theta T/2}}{\int _{0}^{T/2}}{r^{a}}{(T-r)^{b}}dr+C{T^{-\frac{b+1}{2}}}{e^{-\theta T}}{\int _{T/2}^{T}}{e^{\theta r}}{(T-r)^{b}}dr\\ {} & \displaystyle =& \displaystyle {T^{\frac{b+1}{2}}}{e^{-\theta T/2}}{\int _{0}^{1/2}}{x^{a}}{(1-x)^{b}}dr+C{T^{-\frac{b+1}{2}}}{\int _{0}^{T/2}}{e^{-\theta y}}{y^{b}}dy\\ {} & \displaystyle \le & \displaystyle {T^{\frac{b+1}{2}}}{e^{-\theta T/2}}\beta (a+1,b+1)+C{T^{-\frac{b+1}{2}}}\Gamma (b+1)\\ {} & \displaystyle \longrightarrow & \displaystyle 0\end{array}\]
as $T\to \infty $, thanks to $a+1>0$ and $b+1>0$.
Consequently, combining (32), (34) and (35), we obtain (30).  □
In order to investigate the asymptotic behavior in distribution of the estimators $({\widetilde{\theta }_{T}},{\widetilde{\mu }_{T}})$ and $({\widetilde{\theta }_{T}},{\widetilde{\alpha }_{T}})$, as $T\to \infty $, we will also need the following lemmas.
Lemma 5.
Suppose that $a>-1$, $|b|<1$ and $|b|<a+1$. Let X be the process given by (2). Then we have for every $T>0$,
(36)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle \frac{1}{2}{X_{T}^{2}}-\frac{{X_{T}}}{T}{\int _{0}^{T}}{X_{t}}dt& \displaystyle =& \displaystyle \theta \left({\int _{0}^{T}}{X_{t}^{2}}dt-\frac{1}{T}{\left({\int _{0}^{T}}{X_{t}}dt\right)^{2}}\right)\\ {} & & \displaystyle +\left(\mu +\theta {Z_{T}}\right){\int _{0}^{T}}{e^{\theta t}}d{B_{t}^{a,b}}+{R_{T}},\end{array}\]
where ${Z_{T}}$ is given in (8), and the process ${R_{T}}$ is defined by
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {R_{T}}& \displaystyle :=& \displaystyle \frac{1}{2}{\left(\mu \theta T\right)^{2}}+\frac{1}{2}{({B_{T}^{a,b}})^{2}}-\mu {B_{T}^{a,b}}-\frac{{(\mu \theta )^{2}}{T^{2}}}{2}-\frac{{B_{T}^{a,b}}}{T}{\int _{0}^{T}}{X_{t}}dt\\ {} & & \displaystyle -\theta {\int _{0}^{T}}{({B_{t}^{a,b}})^{2}}dt+{\theta ^{2}}{\int _{0}^{T}}{e^{-\theta t}}{B_{t}^{a,b}}{\int _{0}^{t}}{e^{\theta s}}{B_{s}^{a,b}}dsdt.\end{array}\]
Moreover, as $T\longrightarrow \infty $,
(37)
\[ {T^{-\frac{a}{2}}}{e^{-\theta T}}{R_{T}}\longrightarrow 0\]
almost surely.
Proof.
Using similar arguments as in [14, Lemma 3.1] we obtain (36). On the other hand, the convergence (37) is a direct consequence of (16), (18) and $|b|<1$.  □
Lemma 6.
Suppose that $a>-1$, $|b|<1$ and $|b|<a+1$. Let F be any $\sigma \{{B_{t}^{a,b}},t\ge 0\}$-measurable random variable such that $P(F<\infty )=1$. Then as $T\to \infty $,
(38)
\[ \left(F,{T^{-\frac{a}{2}}}{e^{-\theta T}}{\int _{0}^{T}}{e^{\theta t}}d{B_{t}^{a,b}}\right)\stackrel{Law}{\longrightarrow }\left(F,\sqrt{\frac{\Gamma (b+1)}{{\theta ^{b+1}}}}{N_{2}}\right),\]
and
(39)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \left(\frac{{B_{T}^{a,b}}}{{T^{\frac{a+b+1}{2}}}},F,{T^{-\frac{a}{2}}}{e^{-\theta T}}{\int _{0}^{T}}{e^{\theta t}}d{B_{t}^{a,b}}\right)\\ {} & & \displaystyle \stackrel{Law}{\longrightarrow }\left(\sqrt{2\beta (a+1,b+1)}{N_{1}},F,\sqrt{\frac{\Gamma (b+1)}{{\theta ^{b+1}}}}{N_{2}}\right),\end{array}\]
where ${N_{1}}\sim \mathcal{N}(0,1)$, ${N_{2}}\sim \mathcal{N}(0,1)$ and ${B^{a,b}}$ are independent.
Proof.
The convergence (38) is proved in [10, Lemma 2.4]. Now we prove (39). Using similar arguments as in the proof of [13, Lemma 7] it suffices to prove that for every positive integer d, and for all fixed ${s_{1}},\dots ,{s_{d}}\ge 0$, $\Big(\frac{{B_{T}^{a,b}}}{{T^{\frac{a+b+1}{2}}}},{B_{{s_{1}}}^{a,b}},\dots ,{B_{{s_{d}}}^{a,b}},{T^{-\frac{a}{2}}}{e^{-\theta T}}{\textstyle\int _{0}^{T}}{e^{\theta t}}d{B_{t}^{a,b}}\Big)$ converges in distribution to
\[ \left(\sqrt{2\beta (a+1,b+1)}{N_{1}},{B_{{s_{1}}}^{a,b}},\dots ,{B_{{s_{d}}}^{a,b}},\sqrt{\frac{\Gamma (b+1)}{{\theta ^{b+1}}}}{N_{2}}\right)\]
as $T\to \infty $. Moreover, since the left-hand side in this latter convergence is a Gaussian vector, it is sufficient to establish the convergence of its covariance matrix. Combining this with Lemma 4, the desired result is obtained.  □
Recall that if $X\sim \mathcal{N}({m_{1}},{\sigma _{1}})$ and $Y\sim \mathcal{N}({m_{2}},{\sigma _{2}})$ are two independent random variables, then $X/Y$ follows a Cauchy-type distribution. For a motivation and further references, we refer the reader to [22], as well as [19]. Notice also that if $N\sim \mathcal{N}(0,1)$ is independent of ${B^{a,b}}$, then N is independent of ${\zeta _{\infty }}$, since ${\zeta _{\infty }}=\theta {\textstyle\int _{0}^{\infty }}{e^{-\theta s}}{B_{s}^{a,b}}ds$ is a functional of ${B^{a,b}}$.
Theorem 2.
Suppose that $a>-1$, $|b|<1$ and $|b|<a+1$. Suppose that ${N_{1}}\sim \mathcal{N}(0,1)$, ${N_{2}}\sim \mathcal{N}(0,1)$ and ${B^{a,b}}$ are independent. Then as $T\to \infty $,
(40)
\[ {e^{\theta T}}({\widetilde{\theta }_{T}}-\theta )\stackrel{Law}{\longrightarrow }\frac{2\sqrt{\frac{\Gamma (b+1)}{{\theta ^{b-1}}}}{N_{2}}}{\mu +{\zeta _{\infty }}}.\]
Moreover, if $a+b<1$, then as $T\to \infty $,
(41)
\[ {T^{\frac{1-a-b}{2}}}\left({\widetilde{\mu }_{T}}-\mu \right)\stackrel{Law}{\longrightarrow }\frac{\sqrt{2\beta (a+1,b+1)}}{\theta }{N_{1}},\]
(42)
\[ {T^{\frac{1-a-b}{2}}}\left({\widetilde{\alpha }_{T}}-\alpha \right)\stackrel{Law}{\longrightarrow }\sqrt{2\beta (a+1,b+1)}{N_{1}}.\]
Also, as $T\to \infty $,
(43)
\[ \left({e^{\theta T}}({\widetilde{\theta }_{T}}-\theta ),{T^{\frac{1-a-b}{2}}}\left({\widetilde{\mu }_{T}}-\mu \right)\right)\stackrel{Law}{\longrightarrow }\left(\frac{2\sqrt{\frac{\Gamma (b+1)}{{\theta ^{b-1}}}}{N_{2}}}{\mu +{\zeta _{\infty }}},\frac{\sqrt{2\beta (a+1,b+1)}}{\theta }{N_{1}}\right),\]
(44)
\[ \left({e^{\theta T}}({\widetilde{\theta }_{T}}-\theta ),{T^{\frac{1-a-b}{2}}}\left({\widetilde{\alpha }_{T}}-\alpha \right)\right)\stackrel{Law}{\longrightarrow }\left(\frac{2\sqrt{\frac{\Gamma (b+1)}{{\theta ^{b-1}}}}{N_{2}}}{\mu +{\zeta _{\infty }}},\sqrt{2\beta (a+1,b+1)}{N_{1}}\right).\]
Proof.
First we prove (40). From (3) and (36) we can write
(45)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle {T^{-\frac{a}{2}}}{e^{\theta T}}\left({\widetilde{\theta }_{T}}-\theta \right)\\ {} & \displaystyle =& \displaystyle \frac{\left(\mu +\theta {Z_{T}}\right){T^{-\frac{a}{2}}}{e^{-\theta T}}{\textstyle\textstyle\int _{0}^{T}}{e^{\theta t}}d{B_{t}^{a,b}}+{T^{-\frac{a}{2}}}{e^{-\theta T}}{R_{T}}}{{e^{-2\theta T}}\left({\textstyle\textstyle\int _{0}^{T}}{X_{t}^{2}}dt-\frac{1}{T}{\left({\textstyle\textstyle\int _{0}^{T}}{X_{t}}dt\right)^{2}}\right)}\\ {} & \displaystyle =& \displaystyle \frac{{T^{-\frac{a}{2}}}{e^{-\theta T}}{\textstyle\textstyle\int _{0}^{T}}{e^{\theta t}}d{B_{t}^{a,b}}}{\left(\mu +{\zeta _{\infty }}\right)}\times \frac{\left(\mu +{\zeta _{\infty }}\right)\left(\mu +\theta {Z_{T}}\right)}{{e^{-2\theta T}}\left({\textstyle\textstyle\int _{0}^{T}}{X_{t}^{2}}dt-\frac{1}{T}{\left({\textstyle\textstyle\int _{0}^{T}}{X_{t}}dt\right)^{2}}\right)}\\ {} & & \displaystyle +\frac{{T^{-\frac{a}{2}}}{e^{-\theta T}}{R_{T}}}{{e^{-2\theta T}}\left({\textstyle\textstyle\int _{0}^{T}}{X_{t}^{2}}dt-\frac{1}{T}{\left({\textstyle\textstyle\int _{0}^{T}}{X_{t}}dt\right)^{2}}\right)}\\ {} & \displaystyle =:& \displaystyle {a_{T}}\times {b_{T}}+{c_{T}}.\end{array}\]
Lemma 6 yields, as $T\to \infty $,
\[ {a_{T}}\stackrel{Law}{\longrightarrow }\frac{\sqrt{\frac{\Gamma (b+1)}{{\theta ^{b+1}}}}{N_{2}}}{\mu +{\zeta _{\infty }}},\]
whereas (20), (21) and (14) imply that ${b_{T}}\longrightarrow 2\theta $ almost surely as $T\to \infty $. On the other hand, by (20), (21) and (37), we obtain that ${c_{T}}\longrightarrow 0$ almost surely as $T\to \infty $.
Combining all these facts together with (38), we get (40).
Using (3) and (5), a straightforward calculation shows that ${\widetilde{\theta }_{T}}$ and ${\widetilde{\mu }_{T}}$ verify
(46)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {\widetilde{\theta }_{T}}{\widetilde{\mu }_{T}}T& \displaystyle =& \displaystyle {\widetilde{\theta }_{T}}\frac{{\widetilde{\mu }_{T}}}{{X_{T}}}{X_{T}}T={X_{T}}-{\widetilde{\theta }_{T}}{\int _{0}^{T}}{X_{t}}dt.\end{array}\]
Combining (46) with (2), we obtain
(47)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle {T^{\frac{1-a-b}{2}}}\left({\widetilde{\mu }_{T}}-\mu \right)\end{array}\]
(48)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& \displaystyle =& \displaystyle \frac{1}{{\widetilde{\theta }_{T}}}\left[-{e^{\theta T}}\left({\widetilde{\theta }_{T}}-\theta \right)\frac{{e^{-\theta T}}}{{T^{\frac{a+b+1}{2}}}}{\int _{0}^{T}}{X_{t}}dt-\mu \frac{{T^{\frac{1-a-b}{2}}}}{{e^{\theta T}}}{e^{\theta T}}\left({\widetilde{\theta }_{T}}-\theta \right)+\frac{{B_{T}^{a,b}}}{{T^{\frac{a+b+1}{2}}}}\right]\\ {} & \displaystyle =:& \displaystyle \frac{1}{{\widetilde{\theta }_{T}}}\left[{D_{T}}+\frac{{B_{T}^{a,b}}}{{T^{\frac{a+b+1}{2}}}}\right].\end{array}\]
Using (21), (24), (40) and Slutsky’s theorem, we obtain ${D_{T}}\longrightarrow 0$ in probability as $T\to \infty $. This together with (24) implies (41).
Further, according to (46) and (2) we can write
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle {T^{\frac{1-a-b}{2}}}\left({\widetilde{\alpha }_{T}}-\alpha \right)& \displaystyle =& \displaystyle -{e^{\theta T}}\left({\widetilde{\theta }_{T}}-\theta \right)\frac{{e^{-\theta T}}}{{T^{\frac{a+b+1}{2}}}}{\int _{0}^{T}}{X_{t}}dt+\frac{{B_{T}^{a,b}}}{{T^{\frac{a+b+1}{2}}}},\end{array}\]
which proves (42), by using (21), (24), (40), and Slutsky’s theorem.
Let us now prove (43). By (45) and (48) we have
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \left({e^{\theta T}}({\widetilde{\theta }_{T}}-\theta ),{T^{\frac{1-a-b}{2}}}\left({\widetilde{\mu }_{T}}-\mu \right)\right)\\ {} & \displaystyle =& \displaystyle \left({a_{T}}\times {b_{T}}+{c_{T}},\frac{1}{{\widetilde{\theta }_{T}}}\left[{D_{T}}+\frac{{B_{T}^{a,b}}}{{T^{\frac{a+b+1}{2}}}}\right]\right)\\ {} & \displaystyle =& \displaystyle \left({a_{T}}\times {b_{T}},\frac{1}{{\widetilde{\theta }_{T}}}\frac{{B_{T}^{a,b}}}{{T^{\frac{a+b+1}{2}}}}\right)+\left({c_{T}},\frac{1}{{\widetilde{\theta }_{T}}}{D_{T}}\right)\\ {} & \displaystyle =& \displaystyle \frac{1}{{\widetilde{\theta }_{T}}}\left(2{\theta ^{2}}{a_{T}},\frac{{B_{T}^{a,b}}}{{T^{\frac{a+b+1}{2}}}}\right)+\frac{1}{{\widetilde{\theta }_{T}}}\left({a_{T}}\times ({b_{T}}\times {\widetilde{\theta }_{T}}-2{\theta ^{2}}),0\right)\\ {} & & \displaystyle \hspace{1em}+\left({c_{T}},\frac{1}{{\widetilde{\theta }_{T}}}{D_{T}}\right).\end{array}\]
By the above convergences and Slutsky’s theorem we deduce, as $T\to \infty $,
\[ \frac{1}{{\widetilde{\theta }_{T}}}\left({a_{T}}\times ({b_{T}}\times {\widetilde{\theta }_{T}}-2{\theta ^{2}}),0\right)\longrightarrow 0,\hspace{2.5pt}\left({c_{T}},\frac{1}{{\widetilde{\theta }_{T}}}{D_{T}}\right)\longrightarrow 0\hspace{2.5pt}\text{in probability}.\]
Therefore, using (39), we obtain as $T\to \infty $,
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}\displaystyle \frac{1}{{\widetilde{\theta }_{T}}}\left(2{\theta ^{2}}{a_{T}},\frac{{B_{T}^{a,b}}}{{T^{\frac{a+b+1}{2}}}}\right)& \displaystyle =& \displaystyle \frac{1}{{\widetilde{\theta }_{T}}}\left(2{\theta ^{2}}\frac{{e^{-\theta T}}{\textstyle\textstyle\int _{0}^{T}}{e^{\theta t}}d{B_{t}^{a,b}}}{\left(\mu +{\zeta _{\infty }}\right)},\frac{{B_{T}^{a,b}}}{{T^{\frac{a+b+1}{2}}}}\right)\\ {} & & \displaystyle \stackrel{Law}{\longrightarrow }\left(\frac{2\sqrt{\frac{\Gamma (b+1)}{{\theta ^{b-1}}}}{N_{2}}}{\mu +{\zeta _{\infty }}},\frac{\sqrt{2\beta (a+1,b+1)}}{\theta }{N_{1}}\right),\end{array}\]
which completes the proof of (43). Finally, following the same arguments as in the proof of (43) we obtain (44).  □

A Appendix: Young integral

In this section, we briefly recall some basic elements of the Young integral (see [25]), which are helpful for some of the arguments we use. For any $\alpha \in [0,1]$, we denote by ${\mathcal{H}^{\alpha }}([0,T])$ the set of α-Hölder continuous functions, that is, the set of functions $f:[0,T]\to \mathbb{R}$ such that
\[ |f{|_{\alpha }}:=\underset{0\le s<t\le T}{\sup }\frac{|f(t)-f(s)|}{{(t-s)^{\alpha }}}<\infty .\]
We also set $|f{|_{\infty }}={\sup _{t\in [0,T]}}|f(t)|$, and we equip ${\mathcal{H}^{\alpha }}([0,T])$ with the norm
\[ \| f{\| _{\alpha }}:=|f{|_{\alpha }}+|f{|_{\infty }}.\]
Let $f\in {\mathcal{H}^{\alpha }}([0,T])$, and consider the operator ${T_{f}}:{\mathcal{C}^{1}}([0,T])\to {\mathcal{C}^{0}}([0,T])$ defined as
\[ {T_{f}}(g)(t)={\int _{0}^{t}}f(u){g^{\prime }}(u)du,\hspace{1em}t\in [0,T].\]
It can be shown (see, e.g., [20, Section 3.1]) that, for any $\beta \in (1-\alpha ,1)$, there exists a constant ${C_{\alpha ,\beta ,T}}>0$ depending only on α, β and T such that, for any $g\in {\mathcal{C}^{1}}([0,T])$,
\[ {\left\| {\int _{0}^{\cdot }}f(u){g^{\prime }}(u)du\right\| _{\beta }}\le {C_{\alpha ,\beta ,T}}\| f{\| _{\alpha }}\| g{\| _{\beta }}.\]
We deduce that, for any $\alpha \in (0,1)$, any $f\in {\mathcal{H}^{\alpha }}([0,T])$ and any $\beta \in (1-\alpha ,1)$, the linear operator ${T_{f}}:{\mathcal{C}^{1}}([0,T])\subset {\mathcal{H}^{\beta }}([0,T])\to {\mathcal{H}^{\beta }}([0,T])$, defined as ${T_{f}}(g)={\textstyle\int _{0}^{\cdot }}f(u){g^{\prime }}(u)du$, is continuous. By density, it extends (in a unique way) to an operator defined on ${\mathcal{H}^{\beta }}$. As a consequence, if $f\in {\mathcal{H}^{\alpha }}([0,T])$, if $g\in {\mathcal{H}^{\beta }}([0,T])$ and if $\alpha +\beta >1$, then the (so-called) Young integral ${\textstyle\int _{0}^{\cdot }}f(u)dg(u)$ is (well) defined as being ${T_{f}}(g)$.
The Young integral obeys the following formula. Let $f\in {\mathcal{H}^{\alpha }}([0,T])$ with $\alpha \in (0,1)$, and $g\in {\mathcal{H}^{\beta }}([0,T])$ with $\beta \in (0,1)$. If $\alpha +\beta >1$, then ${\textstyle\int _{0}^{.}}{g_{u}}d{f_{u}}$ and ${\textstyle\int _{0}^{.}}{f_{u}}d{g_{u}}$ are well-defined as Young integrals, and for all $t\in [0,T]$,
(49)
\[ {f_{t}}{g_{t}}={f_{0}}{g_{0}}+{\int _{0}^{t}}{g_{u}}d{f_{u}}+{\int _{0}^{t}}{f_{u}}d{g_{u}}.\]

Acknowledgments

We thank the two anonymous reviewers for their very careful reading and suggestions, which have led to significant improvements in the presentation of our results.

References

[1] 
Alsenafi, A., Al-Foraih, M., Es-Sebaiy, K.: Least squares estimation for non-ergodic weighted fractional Ornstein-Uhlenbeck process of general parameters (2020). Preprint. arXiv:2002.06861
[2] 
Basawa, I.V., Scott, D.J.: Asymptotic Optimal Inference for Non-Ergodic Models. Lecture Notes in Statist., vol. 17. Springer, New York (1983). MR0688650
[3] 
Bajja, S., Es-Sebaiy, K., Viitasaari, L.: Least squares estimator of fractional Ornstein-Uhlenbeck processes with periodic mean. J. Korean Stat. Soc. 46(4), 608–622 (2017). MR3718150. https://doi.org/10.1016/j.jkss.2017.06.002
[4] 
Belfadli, Es-Sebaiy K, R., Ouknine, Y.: Parameter estimation for fractional Ornstein-Uhlenbeck processes: non-ergodic case. Front. Sci. Eng. 1(1), 1–16 (2011)
[5] 
Bojdecki, T., Gorostiza, L., Talarczyk, A.: Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems. Electron. Commun. Probab. 12, 161–172 (2007). MR2318163. https://doi.org/10.1214/ECP.v12-1272
[6] 
Chronopoulou, A., Viens, F.: Estimation and pricing under long-memory stochastic volatility. Ann. Finance 8, 379–403 (2012). MR2922802. https://doi.org/10.1007/s10436-010-0156-4
[7] 
Chronopoulou, A., Viens, F.: Stochastic volatility and option pricing with long-memory in discrete and continuous time. Quant. Finance 12, 635–649 (2012). MR2909603. https://doi.org/10.1080/14697688.2012.664939
[8] 
Dehling, H., Franke, B., Woerner, J.H.C.: Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean. Stat. Inference Stoch. Process. 1–14 (2016). MR3619570. https://doi.org/10.1007/s11203-016-9136-2
[9] 
Dietz, H.M., Kutoyants, Y.A.: Parameter estimation for some non-recurrent solutions of SDE. Stat. Decis. 21, 29–46 (2003). MR1985650. https://doi.org/10.1524/stnd.21.1.29.20321
[10] 
El Machkouri, M., Es-Sebaiy, K., Ouknine, Y.: Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes. J. Korean Stat. Soc. 45, 329–341 (2016). MR3527650. https://doi.org/10.1016/j.jkss.2015.12.001
[11] 
El Onsy, B., Es-Sebaiy, K., Viens, F.: Parameter Estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise. Stochastics 89(2), 431–468 (2017). MR3590429. https://doi.org/10.1080/17442508.2016.1248967
[12] 
Es-Sebaiy, K., Alazemi, F., Al-Foraih, M.: Least squares type estimation for discretely observed non-ergodic Gaussian Ornstein-Uhlenbeck processes. Acta Math. Sci. 39(4), 989–1002 (2019). MR4066516. https://doi.org/10.1007/s10473-019-0406-0
[13] 
Es-Sebaiy, K., Nourdin, I.: Parameter estimation for α-fractional bridges. Springer Proc. Math. Stat. 34, 385–412 (2013). MR3070453. https://doi.org/10.1007/978-1-4614-5906-4_17
[14] 
Es-Sebaiy, K., Sebaiy M, Es.: Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model. Statistical Methods & Applications 1–28 (2020). https://doi.org/10.1007/s10260-020-00528-4
[15] 
Hu, Y., Nualart, D., Zhou, H.: Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter. Stat. Inference Stoch. Process. 1–32 (2017). MR3918739. https://doi.org/10.1007/s11203-017-9168-2
[16] 
Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance 18(6), 933–949 (2018). MR3805308. https://doi.org/10.1080/14697688.2017.1393551
[17] 
Jacod, J.: Parametric inference for discretely observed non-ergodic diffusions. Bernoulli 12, 383–401 (2006). MR2232724. https://doi.org/10.3150/bj/1151525127
[18] 
Kleptsyna, M.L., Le Breton, A.: Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat. Inference Stoch. Process. 5(3), 229–248 (2002). MR1943832. https://doi.org/10.1023/A:1021220818545
[19] 
Marsaglia, G.: Ratios of normal variables and ratios of sums of uniform variables. J. Am. Stat. Assoc. 60, 193–204 (1965). MR0178490. https://doi.org/10.1080/01621459.1965.10480783
[20] 
Nourdin, I.: Selected Aspects of Fractional Brownian Motion. Bocconi & Springer Series, vol. 4. Springer/Bocconi University Press, Milan (2012). MR3076266. https://doi.org/10.1007/978-88-470-2823-4
[21] 
Nualart, D.: The Malliavin calculus and related topics (Vol. 1995). Springer, Berlin (2006). MR1344217. https://doi.org/10.1007/978-1-4757-2437-0
[22] 
Pham-Gia, T., Turkkan, N., Marchand, E.: Density of the ratio of two normal random variables and applications. Commun. Stat., Theory Methods 35(9), 1569–1591 (2006). MR2328495. https://doi.org/10.1080/03610920600683689
[23] 
Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5(2), 177–188 (1977). https://doi.org/10.1016/0304-405X(77)90016-2
[24] 
Shimizu, Y.: Notes on drift estimation for certain non-recurrent diffusion from sampled data. Stat. Probab. Lett. 79, 2200–2207 (2009). MR2572052. https://doi.org/10.1016/j.spl.2009.07.015
[25] 
Young, L.C.: An inequality of the Hölder type connected with Stieltjes integration. Acta Math. 67, 251–282 (1936). MR1555421. https://doi.org/10.1007/BF02401743
Reading mode PDF XML

Table of contents
  • 1 Introduction
  • 2 Notations and auxiliary results
  • 3 Strong consistency
  • 4 Joint asymptotic distribution
  • A Appendix: Young integral
  • Acknowledgments
  • References

Copyright
© 2021 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Weighted fractional Vasicek model parameter estimation strong consistency joint asymptotic distribution Young integral

MSC2010
60G15 60G22 62F12 62M09 62M86

Funding
The Project was Funded by Kuwait Foundation for the Advancement of Sciences under project code: PR18-16SM-04.

Metrics
since March 2018
654

Article info
views

552

Full article
views

410

PDF
downloads

128

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

  • Theorems
    2
Theorem 1.
Theorem 2.
Theorem 1.
Suppose that $a>-1$, $|b|<1$ and $|b|<a+1$. Let ${\widetilde{\theta }_{T}}$, ${\widetilde{\alpha }_{T}}$ and ${\widetilde{\mu }_{T}}$ be given by (3), (4) and (5), respectively. Then, almost surely, as $T\to \infty $,
(24)
\[ {\widetilde{\theta }_{T}}\longrightarrow \theta .\]
Moreover, if $a+b<1$,
(25)
\[ {\widetilde{\mu }_{T}}\longrightarrow \mu ,\]
and consequently,
\[ {\widetilde{\alpha }_{T}}={\widetilde{\mu }_{T}}{\widetilde{\theta }_{T}}\longrightarrow \alpha =\mu \theta \]
almost surely, as $T\to \infty $.
Theorem 2.
Suppose that $a>-1$, $|b|<1$ and $|b|<a+1$. Suppose that ${N_{1}}\sim \mathcal{N}(0,1)$, ${N_{2}}\sim \mathcal{N}(0,1)$ and ${B^{a,b}}$ are independent. Then as $T\to \infty $,
(40)
\[ {e^{\theta T}}({\widetilde{\theta }_{T}}-\theta )\stackrel{Law}{\longrightarrow }\frac{2\sqrt{\frac{\Gamma (b+1)}{{\theta ^{b-1}}}}{N_{2}}}{\mu +{\zeta _{\infty }}}.\]
Moreover, if $a+b<1$, then as $T\to \infty $,
(41)
\[ {T^{\frac{1-a-b}{2}}}\left({\widetilde{\mu }_{T}}-\mu \right)\stackrel{Law}{\longrightarrow }\frac{\sqrt{2\beta (a+1,b+1)}}{\theta }{N_{1}},\]
(42)
\[ {T^{\frac{1-a-b}{2}}}\left({\widetilde{\alpha }_{T}}-\alpha \right)\stackrel{Law}{\longrightarrow }\sqrt{2\beta (a+1,b+1)}{N_{1}}.\]
Also, as $T\to \infty $,
(43)
\[ \left({e^{\theta T}}({\widetilde{\theta }_{T}}-\theta ),{T^{\frac{1-a-b}{2}}}\left({\widetilde{\mu }_{T}}-\mu \right)\right)\stackrel{Law}{\longrightarrow }\left(\frac{2\sqrt{\frac{\Gamma (b+1)}{{\theta ^{b-1}}}}{N_{2}}}{\mu +{\zeta _{\infty }}},\frac{\sqrt{2\beta (a+1,b+1)}}{\theta }{N_{1}}\right),\]
(44)
\[ \left({e^{\theta T}}({\widetilde{\theta }_{T}}-\theta ),{T^{\frac{1-a-b}{2}}}\left({\widetilde{\alpha }_{T}}-\alpha \right)\right)\stackrel{Law}{\longrightarrow }\left(\frac{2\sqrt{\frac{\Gamma (b+1)}{{\theta ^{b-1}}}}{N_{2}}}{\mu +{\zeta _{\infty }}},\sqrt{2\beta (a+1,b+1)}{N_{1}}\right).\]

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy