Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 8, Issue 2 (2021)
  4. Sharp asymptotics for q-norms of random ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

Sharp asymptotics for q-norms of random vectors in high-dimensional ℓpn-balls
Volume 8, Issue 2 (2021), pp. 239–274
Tom Kaufmann ORCID icon link to view author Tom Kaufmann details  

Authors

 
Placeholder
https://doi.org/10.15559/21-VMSTA182
Pub. online: 22 June 2021      Type: Research Article      Open accessOpen Access

Received
29 January 2021
Revised
5 May 2021
Accepted
22 May 2021
Published
22 June 2021

Abstract

Sharp large deviation results of Bahadur–Ranga Rao type are provided for the q-norm of random vectors distributed on the ${\ell _{p}^{n}}$-ball ${\mathbb{B}_{p}^{n}}$ according to the cone probability measure or the uniform distribution for $1\le q<p<\infty $, thereby furthering previous large deviation results by Kabluchko, Prochno and Thäle in the same setting. These results are then applied to deduce sharp asymptotics for intersection volumes of different ${\ell _{p}^{n}}$-balls in the spirit of Schechtman and Schmuckenschläger, and for the length of the projection of an ${\ell _{p}^{n}}$-ball onto a line with uniform random direction. The sharp large deviation results are proven by providing convenient probabilistic representations of the q-norms, employing local limit theorems to approximate their densities, and then using geometric results for asymptotic expansions of Laplace integrals to integrate these densities and derive concrete probability estimates.

References

[1] 
Adriani, C., Baldi, P.: Sharp estimates of deviations of the sample mean in many dimensions. Ann. Inst. Henri Poincaré Probab. Stat. 33(3), 371–385 (1997). MR1457057
[2] 
Alonso-Gutiérrez, D., Prochno, J.: Thin-shell concentration for random vectors in Orlicz balls via moderate deviations and Gibbs measures. arXiv:2011.07523 (2020)
[3] 
Alonso-Gutiérrez, D., Prochno, J., Thäle, C.: Large deviations for high-dimensional random projections of ${\ell _{p}^{n}}$-balls. Adv. Appl. Math. 99, 1–35 (2018). MR3806754. https://doi.org/10.1016/j.aam.2018.04.003
[4] 
Alonso-Gutiérrez, D., Prochno, J., Thäle, C.: Gaussian fluctuations for high-dimensional random projections of ${\ell _{p}^{n}}$-balls. Bernoulli 25(4A), 3139–3174 (2019). MR4003577. https://doi.org/10.3150/18-BEJ1084
[5] 
Anttila, M., Ball, K., Perissinaki, I.: The central limit problem for convex bodies. Trans. Am. Math. Soc. 355(12), 4723–4735 (2003). MR1997580. https://doi.org/10.1090/S0002-9947-03-03085-X
[6] 
Artstein-Avidan, S., Giannopoulos, A., Milman, V.D.: Asymptotic Geometric Analysis. Part I. Mathematical Surveys and Monographs, vol. 202, p. 451. American Mathematical Society, Providence, RI (2015). MR3331351. https://doi.org/10.1090/surv/202
[7] 
Bahadur, R.R., Ranga Rao, R.: On deviations of the sample mean. Ann. Math. Stat. 31(4), 1015–1027 (1960). MR0117775. https://doi.org/10.1214/aoms/1177705674
[8] 
Barthe, F., Guédon, O., Mendelson, S., Naor, A.: A probabilistic approach to the geometry of the ${\ell _{p}^{n}}$-ball. Ann. Probab. 33(2), 480–513 (2005). MR2123199. https://doi.org/10.1214/009117904000000874
[9] 
Bleistein, N., Handelsmann, R.A.: Asymptotic Expansions of Integrals. Dover Publications, Inc., New York (1975). MR0863284
[10] 
Borovkov, A.A., Rogozin, B.A.: On the central limit theorem in the higher-dimensional case. Teor. Veroâtn. Primen. 10, 61–69 (1965). MR0173279
[11] 
Brazitikos, S., Giannopoulos, A., Valettas, P., Vritsiou, B.-H.: Geometry of Isotropic Convex Bodies. Mathematical Surveys and Monographs, vol. 196, p. 594. American Mathematical Society, Providence, RI (2014). MR3185453. https://doi.org/10.1090/surv/196
[12] 
Breitung, K., Hohenbichler, M.: Asymptotic approximations for multivariate integrals with an application to multinormal probabilities. J. Multivar. Anal. 30(1), 80–97 (1989). MR1003710. https://doi.org/10.1016/0047-259X(89)90089-4
[13] 
Cramér, H.: Sur un nouveau théorème-limite de la théorie des probabilités. Actual. Sci. Ind. 736, 5–23 (1938)
[14] 
Daniels, H.E.: Saddlepoint approximations in statistics. Ann. Math. Stat. 25(4), 631–650 (1954). MR0066602. https://doi.org/10.1214/aoms/1177728652
[15] 
DasGupta, A.: Fundamentals of Probability: a First Course. Springer (2010). MR2583199. https://doi.org/10.1007/978-1-4419-5780-1
[16] 
Debye, P.: Nährungsformeln für die Zylinderfunktionen für große Werte des Arguments und unbeschränkt veränderliche Werte des Index. Math. Ann. 67, 535–558 (1909). MR1511547. https://doi.org/10.1007/BF01450097
[17] 
Dembo, A., Zeitouni, O.: Large Deviations. Techniques and Applications. Stochastic Modelling and Applied Probability, vol. 38, p. 396. Springer (2010). MR2571413. https://doi.org/10.1007/978-3-642-03311-7. Corrected reprint of the second (1998) edition.
[18] 
den Hollander, F.: Large Deviations. Fields Institute Monographs, vol. 14, p. 143. American Mathematical Society, Providence, RI (2000). MR1739680
[19] 
Esscher, F.: On the probability function in the collective theory of risk. Scand. Actuar. J. 1932(3), 175–195 (1932). https://doi.org/10.1080/03461238.1932.10405883
[20] 
Gantert, N., Kim, S.S., Ramanan, K.: Large deviations for random projections of ${\ell ^{p}}$ balls. Ann. Probab. 45, 4419–4476 (2017). MR3737915. https://doi.org/10.1214/16-AOP1169
[21] 
Goldman, R.: Curvature formulas for implicit curves and surfaces. Comput. Aided Geom. Des. 22(7), 632–658 (2005). Geometric Modelling and Differential Geometry. MR2169053. https://doi.org/10.1016/j.cagd.2005.06.005
[22] 
Gromov, M., Milman, V.D.: Generalization of the spherical isoperimetric inequality to uniformly convex banach spaces. Compos. Math. 62(3), 263–282 (1987). MR0901393
[23] 
Guédon, O.: Concentration phenomena in high dimensional geometry. In: Journées MAS 2012. ESAIM Proc., vol. 44, pp. 47–60. EDP Sci., Les Ulis (2014). MR3178607. https://doi.org/10.1051/proc/201444002
[24] 
Guédon, O., Nayar, P., Tkocz, T.: Concentration inequalities and geometry of convex bodies. In: Analytical and Probabilistic Methods in the Geometry of Convex Bodies. IMPAN Lect. Notes, vol. 2, pp. 9–86. Polish Acad. Sci. Inst. Math., Warsaw (2014). MR3329056
[25] 
Hicks, N.J.: Notes on Differential Geometry. Van Nostrand Mathematical Studies, vol. 3. D. Van Nostrand Company, Inc., Princeton, N.J.-Toronto-New York-London (1965). VI, 183 p. MR0179691
[26] 
Jensen, J.L.: Saddlepoint Approximations. Oxford Science Publications. Clarendon Press (1995). MR1354837
[27] 
Kabluchko, Z., Prochno, J.: The maximum entropy principle and volumetric properties of Orlicz balls. J. Math. Anal. Appl. 495(1), 124687 (2021). MR4172842. https://doi.org/10.1016/j.jmaa.2020.124687
[28] 
Kabluchko, Z., Prochno, J., Thäle, C.: High-dimensional limit theorems for random vectors in ${\ell _{p}^{n}}$-balls. Commun. Contemp. Math. 21(1), 1750092, 30 p. (2019). MR3904638. https://doi.org/10.1142/S0219199717500924
[29] 
Kabluchko, Z., Prochno, J., Thäle, C.: Sanov-type large deviations in Schatten classes. Ann. Inst. Henri Poincaré Probab. Stat. 56(2), 928–953 (2019). MR4076771. https://doi.org/10.1214/19-AIHP989
[30] 
Kabluchko, Z., Prochno, J., Thäle, C.: High-dimensional limit theorems for random vectors in ${\ell _{p}^{n}}$-balls. II. Commun. Contemp. Math. (to appear) (2019). MR4216415. https://doi.org/10.1142/S0219199719500731
[31] 
Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Probability and its Applications, p. 638. Springer (2002). MR1876169. https://doi.org/10.1007/978-1-4757-4015-8
[32] 
Kim, S.S.: Problems at the interface of probability and convex geometry: Random projections and constrained processes. Ph.D. thesis, Brown University (2017)
[33] 
Kim, S.S., Ramanan, K.: A conditional limit theorem for high-dimensional ${\ell ^{p}}$-spheres. J. Appl. Probab. 55, 1060–1077 (2018). MR3899928. https://doi.org/10.1017/jpr.2018.71
[34] 
Klartag, B.: A central limit theorem for convex sets. Invent. Math. 168(1), 91–131 (2007). MR2285748. https://doi.org/10.1007/s00222-006-0028-8
[35] 
Klartag, B.: Power-law estimates for the central limit theorem for convex sets. J. Funct. Anal. 245(1), 284–310 (2007). MR2311626. https://doi.org/10.1016/j.jfa.2006.12.005
[36] 
Klingenberg, W., Hoffman, D.: A Course in Differential Geometry. Graduate Texts in Mathematics. Springer (2013). MR0474045
[37] 
Liao, Y.-T., Ramanan, K.: Geometric sharp large deviations for random projections of ${\ell _{p}^{n}}$ spheres and balls. arXiv:2001.04053v2 (2020).
[38] 
Naor, A.: The surface measure and cone measure on the sphere of ${\ell _{p}^{n}}$. Trans. Am. Math. Soc. 359(3), 1045–1079 (2007). MR2262841. https://doi.org/10.1090/S0002-9947-06-03939-0
[39] 
Petrov, V.V.: On the probabilities of large deviations for sums of independent random variables. Teor. Veroâtn. Primen. 10, 310–322 (1965). MR0185645
[40] 
Prochno, J., Thäle, C., Turchi, N.: Geometry of ℓpn-balls: Classical results and recent developments. In: High Dimensional Probability VIII. Progress in Probability. N. Gozlan, R. Latala, K. Loucini, M. Madiman eds. Birkhäuser (2019). MR4181365
[41] 
Rachev, S.T., Rüschendorf, L.: Approximate independence of distributions on spheres and their stability properties. Ann. Probab. 19(3), 1311–1337 (1991). MR1112418
[42] 
Richter, W.: Local limit theorems for large deviations. Dokl. Akad. Nauk SSSR 115, 53–56 (1957). MR0093816
[43] 
Richter, W.: Mehrdimensionale lokale Grenzwertsätze für grosse Abweichungen. Teor. Veroâtn. Primen. 3, 107–114 (1958). MR0093814
[44] 
Rockafellar, R.T.: Convex Analysis, vol. 36. Princeton University Press (1970). MR0274683
[45] 
Schechtman, G., Schmuckenschläger, M.: Another remark on the volume of the intersection of two Lpn balls. In: Geometric Aspects of Functional Analysis (1989–90). Lecture Notes in Math., vol. 1469, pp. 174–178. Springer (1991). MR1122622
[46] 
Schechtman, G., Zinn, J.: On the volume of the intersection of two ${L_{p}^{n}}$ balls. Proc. Am. Math. Soc. 110(1), 217–224 (1990). MR1015684. https://doi.org/10.2307/2048262
[47] 
Schechtman, G., Zinn, J.: Concentration on the lpn ball. In: Geometric Aspects of Functional Analysis. Lecture Notes in Math., vol. 1745, pp. 245–256. Springer (2000). MR1796723. https://doi.org/10.1007/BFb0107218
[48] 
Schmuckenschläger, M.: CLT and the volume of intersections of ${l_{p}^{n}}$-balls. Geom. Dedic. 85(1-3), 189–195 (2001). MR1845607. https://doi.org/10.1023/A:1010353121014
[49] 
Vershynin, R.: High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press (2018). MR3837109. https://doi.org/10.1017/9781108231596

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2021 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Asymptotic geometric analysis Bahadur Ranga Rao high-dimensional convexity intersection volume ℓpn-balls ℓpn-spheres large deviation principles precise large deviations sharp asymptotics sharp large deviations strong large deviations volume of convex bodies

MSC2010
52A23 60F10 46B09 60D05

Metrics
since March 2018
526

Article info
views

331

Full article
views

689

PDF
downloads

108

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy