Asymptotic results for families of random variables having power series distributions
Volume 9, Issue 2 (2022), pp. 207–228
Pub. online: 3 February 2022
Type: Research Article
Open Access
Received
13 September 2021
13 September 2021
Revised
6 December 2021
6 December 2021
Accepted
25 December 2021
25 December 2021
Published
3 February 2022
3 February 2022
Abstract
Suitable families of random variables having power series distributions are considered, and their asymptotic behavior in terms of large (and moderate) deviations is studied. Two examples of fractional counting processes are presented, where the normalizations of the involved power series distributions can be expressed in terms of the Prabhakar function. The first example allows to consider the counting process in [Integral Transforms Spec. Funct. 27 (2016), 783–793], the second one is inspired by a model studied in [J. Appl. Probab. 52 (2015), 18–36].
References
Beghin, L., Macci, C.: Large deviations for fractional Poisson processes. Stat. Probab. Lett. 83, 1193–1202 (2013). MR3041393. https://doi.org/10.1016/j.spl.2013.01.017
Beghin, L., Macci, C.: Asymptotic results for a multivariate version of the alternative fractional Poisson process. Stat. Probab. Lett. 129, 260–268 (2017). MR3688542. https://doi.org/10.1016/j.spl.2017.06.009
Cahoy, D., Di Nardo, E., Polito, F.: Flexible models for overdispersed and underdispersed count data. Stat. Pap. 62, 2969–2990 (2021). MR4332214. https://doi.org/10.1007/s00362-021-01222-7
Consul, P.C., Shenton, L.R.: Some interesting properties of Lagrangian distributions. Commun. Stat. 2, 263–272 (1973). MR0408069. https://doi.org/10.1080/03610917308548270
del Castillo, J., Pérez-Casany, M.: Weighted Poisson distributions for overdispersion and underdispersion situations. Ann. Inst. Stat. Math. 50, 567–585 (1998). MR1664520. https://doi.org/10.1023/A:1003585714207
del Castillo, J., Pérez-Casany, M.: Overdispersed and underdispersed Poisson generalizations. J. Stat. Plan. Inference 134, 486–500 (2005). MR2200069. https://doi.org/10.1016/j.jspi.2004.04.019
Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998). MR1619036. https://doi.org/10.1007/978-1-4612-5320-4
Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events. Springer, Berlin (1997). MR1458613. https://doi.org/10.1007/978-3-642-33483-2
Gajda, J., Beghin, L.: Prabhakar Lévy processes. Stat. Probab. Lett. 178, 109162 (2021). 9 pp. MR4279303. https://doi.org/10.1016/j.spl.2021.109162
Garra, R., Orsingher, E., Polito, F.: State dependent fractional point processes. J. Appl. Probab. 52, 18–36 (2015). MR3336844. https://doi.org/10.1239/jap/1429282604
Giusti, A., Colombaro, I., Garra, R., Garrappa, R., Polito, F., Popolizio, M., Mainardi, F.: A practical guide to Prabhakar fractional calculus. Fract. Calc. Appl. Anal. 23, 9–54 (2020). MR4069921. https://doi.org/10.1515/fca-2020-0002
Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Heidelberg (2014). MR3244285. https://doi.org/10.1007/978-3-662-43930-2
Gupta, P.L., Gupta, R.C., Ong, S.H., Srivastava, H.M.: A class of Hurwitz-Lerch zeta distributions and their applications in reliability. Appl. Math. Comput. 196, 521–531 (2008). MR2388708. https://doi.org/10.1016/j.amc.2007.06.012
Gupta, R.C.: Modified power series distribution and some of its applications. Sankhya, Ser. B 36, 288–298 (1974). MR0391334
Kemp, A.W.: Families of power series distributions, with particular reference to the Lerch family. J. Stat. Plan. Inference 140, 2255–2259 (2010). MR2609484. https://doi.org/10.1016/j.jspi.2010.01.021
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Boston (2006). MR2218073
Luo, M.J., Parmar, R.K., Raina, R.K.: On extended Hurwitz-Lerch zeta function. J. Math. Anal. Appl. 448, 1281–1304 (2017). MR3582282. https://doi.org/10.1016/j.jmaa.2016.11.046
Paris, R.B.: Asymptotics of the special functions of fractional calculus. In: Handbook of Fractional Calculus with Applications, vol. 1, pp. 297–325. De Gruyter, Berlin (2019). MR3888406
Patil, G.P.: Certain properties of the generalized power series distribution. Ann. Inst. Stat. Math. 14, 179–182 (1962). MR0156395. https://doi.org/10.1007/BF02868639
Pogány, T.K., Tomovski, Ž.: Probability distribution built by Prabhakar function. Related Turán and Laguerre inequalities. Integral Transforms Spec. Funct. 27, 783–793 (2016). MR3544402. https://doi.org/10.1080/10652469.2016.1201817