Spatial birth-and-death processes with a finite number of particles
Volume 9, Issue 3 (2022), pp. 279–312
Pub. online: 19 April 2022
Type: Research Article
Open Access
Received
27 September 2021
27 September 2021
Revised
14 March 2022
14 March 2022
Accepted
14 March 2022
14 March 2022
Published
19 April 2022
19 April 2022
Abstract
The aim of this work is to establish essential properties of spatial birth-and-death processes with general birth and death rates on ${\mathbb{R}^{\mathrm{d}}}$. Spatial birth-and-death processes with time dependent rates are obtained as solutions to certain stochastic equations. The existence, uniqueness, uniqueness in law and the strong Markov property of unique solutions are proven when the integral of the birth rate over ${\mathbb{R}^{\mathrm{d}}}$ grows not faster than linearly with the number of particles of the system. Martingale properties of the constructed process provide a rigorous connection to the heuristic generator.
The pathwise behavior of an aggregation model is also studied. The probability of extinction and the growth rate of the number of particles under condition of nonextinction are estimated.
References
Baccelli, F., Mathieu, F., Norros, I.: Mutual service processes in Euclidean spaces: existence and ergodicity. Queueing Syst. 86(1-2), 95–140 (2017). MR3642012. https://doi.org/10.1007/s11134-017-9524-3
Barczy, M., Li, Z., Pap, G.: Stochastic differential equation with jumps for multi-type continuous state and continuous time branching processes with immigration. ALEA, Lat. Am. J. Probab. Math. Stat. 12(1), 129–169 (2015) MR3340375
Belavkin, V.P., Kolokoltsov, V.N.: On a general kinetic equation for many-particle systems with interaction, fragmentation and coagulation. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459(2031), 727–748 (2003) MR1996729. https://doi.org/10.1098/rspa.2002.1026
Bezborodov, V.: Corrigendum to: Asymptotic shape and the speed of propagation of continuous-time continuous-space birth processes. Adv. Appl. Probab. 52(4), 1325–1327 (2020) MR4190043. https://doi.org/10.1017/apr.2020.52
Bezborodov, V., di Persio, L., Finkelshtein, D., Kondratiev, Y., Kutoviy, O.: Fecundity regulation in a spatial birth-and-death process. Stoch. Dyn. 21(1), 27 (2021). MR4192900. https://doi.org/10.1142/S0219493720500380
Bezborodov, V., Di Persio, L., Krueger, T., Lebid, M., Ożański, T.: Asymptotic shape and the speed of propagation of continuous-time continuous-space birth processes. Adv. Appl. Probab. 50(1), 74–101 (2017) MR3781978. https://doi.org/10.1017/apr.2018.5
Bezborodov, V., Persio, L.D.: Maximal irreducibility measure for spatial birth-and-death processes. Stat. Probab. Lett. 125, 25–32 (2017) MR3626065. https://doi.org/10.1016/j.spl.2017.01.019
Bezborodov, V., Kondratiev, Y., Kutoviy, O.: Lattice birth-and-death processes. Mosc. Math. J. 19(1), 7–36 (2019) MR3934306. https://doi.org/10.17323/1609-4514-2019-19-1-7-36
Burke, C.J., Rosenblatt, M.: A Markovian function of a Markov chain. Ann. Math. Stat. 29, 1112–1122 (1958) MR0101557. https://doi.org/10.1214/aoms/1177706444
Chung, K.L.: Markov Chains with Stationary Transition Probabilities. Springer (1967) MR0217872
Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. II, 2nd edn. Probability and its Applications, p. 573. Springer (2008). General theory and structure MR2371524. https://doi.org/10.1007/978-0-387-49835-5
Durrett, R.: Lecture Notes on Particle Systems and Percolation. The Wadsworth & Brooks/Cole Statistics/Probability Series, p. 335. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA (1988) MR0940469
Eibeck, A., Wagner, W.: Stochastic interacting particle systems and nonlinear kinetic equations. Ann. Appl. Probab. 13(3), 845–889 (2003) MR1994039. https://doi.org/10.1214/aoap/1060202829
Etheridge, A.M.: Survival and extinction in a locally regulated population. Ann. Appl. Probab. 14(1), 188–214 (2004) MR2023020. https://doi.org/10.1214/aoap/1075828051
Etheridge, A.M., Kurtz, T.G.: Genealogical constructions of population models. Ann. Probab. 47(4), 1827–1910 (2019). MR3980910. https://doi.org/10.1214/18-AOP1266
Finkelshtein, D., Kondratiev, Y., Kutoviy, O.: Semigroup approach to birth-and-death stochastic dynamics in continuum. J. Funct. Anal. 262(3), 1274–1308 (2012) MR2863863. https://doi.org/10.1016/j.jfa.2011.11.005
Finkelshtein, D., Kondratiev, Y., Kutoviy, O., Zhizhina, E.: On an aggregation in birth-and-death stochastic dynamics. Nonlinearity 27(6), 1105–1133 (2014) MR3207926. https://doi.org/10.1088/0951-7715/27/6/1105
Finkelshtein, D., Kondratiev, Y., Kozitsky, Y., Kutoviy, O.: The statistical dynamics of a spatial logistic model and the related kinetic equation. Math. Models Methods Appl. Sci. 25(2), 343–370 (2015). MR3280962. https://doi.org/10.1142/S0218202515500128
Fournier, N., Méléard, S.: A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14(4), 1880–1919 (2004) MR2099656. https://doi.org/10.1214/105051604000000882
Garcia, N.L., Kurtz, T.G.: Spatial birth and death processes as solutions of stochastic equations. ALEA Lat. Am. J. Probab. Math. Stat. 1, 281–303 (2006) MR2249658
Garcia, N.L., Kurtz, T.G.: Spatial point processes and the projection method. In: In and Out of Equilibrium. 2. Progr. Probab., vol. 60, pp. 271–298. Birkhäuser, Basel (2008) MR2477386. https://doi.org/10.1007/978-3-7643-8786-0_13
Holley, R.A., Stroock, D.W.: Nearest neighbor birth and death processes on the real line. Acta Math. 140(1-2), 103–154 (1978) MR0488380. https://doi.org/10.1007/BF02392306
Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland Mathematical Library, vol. 24, p. 555. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo (1989) MR1011252
Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Probability and its Applications. Springer (2002) MR1876169. https://doi.org/10.1007/978-1-4757-4015-8
Kondratiev, Y., Kuna, T.: Harmonic analysis on configuration space. I. General theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5(2), 201–233 (2002) MR1914839. https://doi.org/10.1142/S0219025702000833
Lavancier, F., Le Guével, R.: Spatial birth–death–move processes: Basic properties and estimation of their intensity functions. J. R. Stat. Soc., Ser. B, Stat. Methodol. 83(4), 798–825 (2021) MR4320002. https://doi.org/10.1111/rssb.12452
Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes vol. 324. Springer (1999) MR1717346. https://doi.org/10.1007/978-3-662-03990-8
Lopes Garcia, N.: Birth and death processes as projections of higher-dimensional Poisson processes. Adv. Appl. Probab. 27(4), 911–930 (1995) MR1358900. https://doi.org/10.2307/1427928
Méléard, S., Tran, V.C.: Trait substitution sequence process and canonical equation for age-structured populations. J. Math. Biol. 58(6), 881–921 (2009). MR2495555. https://doi.org/10.1007/s00285-008-0202-2
Møller, J.: On the rate of convergence of spatial birth-and-death processes. Ann. Inst. Stat. Math. 41(3), 565–581 (1989) MR1032600. https://doi.org/10.1007/BF00050669
Møller, J., Sørensen, M.: Statistical analysis of a spatial birth-and-death process model with a view to modelling linear dune fields. Scand. J. Stat. 21(1), 1–19 (1994) MR1267040
Preston, C.: Spatial birth-and-death processes. Proc. of the 40th Session (Warsaw, 1975), Vol. 2. Invited papers. Bull. Int. Stat. Inst. 46, 2, 371–391 (1975) MR0474532
Sadahiro, Y.: Analysis of the appearance and disappearance of point objects over time. Int. J. Geogr. Inf. Sci. 33(2), 215–239 (2019). https://doi.org/10.1080/13658816.2018.1538517
Shcherbakov, V., Volkov, S.: Long term behaviour of locally interacting birth-and-death processes. J. Stat. Phys. 158(1), 132–157 (2015) MR3296278. https://doi.org/10.1007/s10955-014-1122-8