Spatial birth-and-death processes with a finite number of particles        
        
    
        Volume 9, Issue 3 (2022), pp. 279–312
            
    
                    Pub. online: 19 April 2022
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
27 September 2021
                                    27 September 2021
                Revised
14 March 2022
                                    14 March 2022
                Accepted
14 March 2022
                                    14 March 2022
                Published
19 April 2022
                    19 April 2022
Abstract
The aim of this work is to establish essential properties of spatial birth-and-death processes with general birth and death rates on ${\mathbb{R}^{\mathrm{d}}}$. Spatial birth-and-death processes with time dependent rates are obtained as solutions to certain stochastic equations. The existence, uniqueness, uniqueness in law and the strong Markov property of unique solutions are proven when the integral of the birth rate over ${\mathbb{R}^{\mathrm{d}}}$ grows not faster than linearly with the number of particles of the system. Martingale properties of the constructed process provide a rigorous connection to the heuristic generator.
The pathwise behavior of an aggregation model is also studied. The probability of extinction and the growth rate of the number of particles under condition of nonextinction are estimated.
            References
 Baccelli, F., Mathieu, F., Norros, I.: Mutual service processes in Euclidean spaces: existence and ergodicity. Queueing Syst. 86(1-2), 95–140 (2017). MR3642012. https://doi.org/10.1007/s11134-017-9524-3
 Barczy, M., Li, Z., Pap, G.: Stochastic differential equation with jumps for multi-type continuous state and continuous time branching processes with immigration. ALEA, Lat. Am. J. Probab. Math. Stat. 12(1), 129–169 (2015) MR3340375
 Belavkin, V.P., Kolokoltsov, V.N.: On a general kinetic equation for many-particle systems with interaction, fragmentation and coagulation. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459(2031), 727–748 (2003) MR1996729. https://doi.org/10.1098/rspa.2002.1026
 Bezborodov, V.: Corrigendum to: Asymptotic shape and the speed of propagation of continuous-time continuous-space birth processes. Adv. Appl. Probab. 52(4), 1325–1327 (2020) MR4190043. https://doi.org/10.1017/apr.2020.52
 Bezborodov, V., di Persio, L., Finkelshtein, D., Kondratiev, Y., Kutoviy, O.: Fecundity regulation in a spatial birth-and-death process. Stoch. Dyn. 21(1), 27 (2021). MR4192900. https://doi.org/10.1142/S0219493720500380
 Bezborodov, V., Di Persio, L., Krueger, T., Lebid, M., Ożański, T.: Asymptotic shape and the speed of propagation of continuous-time continuous-space birth processes. Adv. Appl. Probab. 50(1), 74–101 (2017) MR3781978. https://doi.org/10.1017/apr.2018.5
 Bezborodov, V., Persio, L.D.: Maximal irreducibility measure for spatial birth-and-death processes. Stat. Probab. Lett. 125, 25–32 (2017) MR3626065. https://doi.org/10.1016/j.spl.2017.01.019
 Bezborodov, V., Kondratiev, Y., Kutoviy, O.: Lattice birth-and-death processes. Mosc. Math. J. 19(1), 7–36 (2019) MR3934306. https://doi.org/10.17323/1609-4514-2019-19-1-7-36
 Burke, C.J., Rosenblatt, M.: A Markovian function of a Markov chain. Ann. Math. Stat. 29, 1112–1122 (1958) MR0101557. https://doi.org/10.1214/aoms/1177706444
 Chung, K.L.: Markov Chains with Stationary Transition Probabilities. Springer (1967) MR0217872
 Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. II, 2nd edn. Probability and its Applications, p. 573. Springer (2008). General theory and structure MR2371524. https://doi.org/10.1007/978-0-387-49835-5
 Durrett, R.: Lecture Notes on Particle Systems and Percolation. The Wadsworth & Brooks/Cole Statistics/Probability Series, p. 335. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA (1988) MR0940469
 Eibeck, A., Wagner, W.: Stochastic interacting particle systems and nonlinear kinetic equations. Ann. Appl. Probab. 13(3), 845–889 (2003) MR1994039. https://doi.org/10.1214/aoap/1060202829
 Etheridge, A.M.: Survival and extinction in a locally regulated population. Ann. Appl. Probab. 14(1), 188–214 (2004) MR2023020. https://doi.org/10.1214/aoap/1075828051
 Etheridge, A.M., Kurtz, T.G.: Genealogical constructions of population models. Ann. Probab. 47(4), 1827–1910 (2019). MR3980910. https://doi.org/10.1214/18-AOP1266
 Finkelshtein, D., Kondratiev, Y., Kutoviy, O.: Semigroup approach to birth-and-death stochastic dynamics in continuum. J. Funct. Anal. 262(3), 1274–1308 (2012) MR2863863. https://doi.org/10.1016/j.jfa.2011.11.005
 Finkelshtein, D., Kondratiev, Y., Kutoviy, O., Zhizhina, E.: On an aggregation in birth-and-death stochastic dynamics. Nonlinearity 27(6), 1105–1133 (2014) MR3207926. https://doi.org/10.1088/0951-7715/27/6/1105
 Finkelshtein, D., Kondratiev, Y., Kozitsky, Y., Kutoviy, O.: The statistical dynamics of a spatial logistic model and the related kinetic equation. Math. Models Methods Appl. Sci. 25(2), 343–370 (2015). MR3280962. https://doi.org/10.1142/S0218202515500128
 Fournier, N., Méléard, S.: A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14(4), 1880–1919 (2004) MR2099656. https://doi.org/10.1214/105051604000000882
 Garcia, N.L., Kurtz, T.G.: Spatial birth and death processes as solutions of stochastic equations. ALEA Lat. Am. J. Probab. Math. Stat. 1, 281–303 (2006) MR2249658
 Garcia, N.L., Kurtz, T.G.: Spatial point processes and the projection method. In: In and Out of Equilibrium. 2. Progr. Probab., vol. 60, pp. 271–298. Birkhäuser, Basel (2008) MR2477386. https://doi.org/10.1007/978-3-7643-8786-0_13
 Holley, R.A., Stroock, D.W.: Nearest neighbor birth and death processes on the real line. Acta Math. 140(1-2), 103–154 (1978) MR0488380. https://doi.org/10.1007/BF02392306
 Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland Mathematical Library, vol. 24, p. 555. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo (1989) MR1011252
 Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Probability and its Applications. Springer (2002) MR1876169. https://doi.org/10.1007/978-1-4757-4015-8
 Kondratiev, Y., Kuna, T.: Harmonic analysis on configuration space. I. General theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5(2), 201–233 (2002) MR1914839. https://doi.org/10.1142/S0219025702000833
 Lavancier, F., Le Guével, R.: Spatial birth–death–move processes: Basic properties and estimation of their intensity functions. J. R. Stat. Soc., Ser. B, Stat. Methodol. 83(4), 798–825 (2021) MR4320002. https://doi.org/10.1111/rssb.12452
 Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes vol. 324. Springer (1999) MR1717346. https://doi.org/10.1007/978-3-662-03990-8
 Lopes Garcia, N.: Birth and death processes as projections of higher-dimensional Poisson processes. Adv. Appl. Probab. 27(4), 911–930 (1995) MR1358900. https://doi.org/10.2307/1427928
 Méléard, S., Tran, V.C.: Trait substitution sequence process and canonical equation for age-structured populations. J. Math. Biol. 58(6), 881–921 (2009). MR2495555. https://doi.org/10.1007/s00285-008-0202-2
 Møller, J.: On the rate of convergence of spatial birth-and-death processes. Ann. Inst. Stat. Math. 41(3), 565–581 (1989) MR1032600. https://doi.org/10.1007/BF00050669
 Møller, J., Sørensen, M.: Statistical analysis of a spatial birth-and-death process model with a view to modelling linear dune fields. Scand. J. Stat. 21(1), 1–19 (1994) MR1267040
 Preston, C.: Spatial birth-and-death processes. Proc. of the 40th Session (Warsaw, 1975), Vol. 2. Invited papers. Bull. Int. Stat. Inst. 46, 2, 371–391 (1975) MR0474532
 Sadahiro, Y.: Analysis of the appearance and disappearance of point objects over time. Int. J. Geogr. Inf. Sci. 33(2), 215–239 (2019). https://doi.org/10.1080/13658816.2018.1538517
 Shcherbakov, V., Volkov, S.: Long term behaviour of locally interacting birth-and-death processes. J. Stat. Phys. 158(1), 132–157 (2015) MR3296278. https://doi.org/10.1007/s10955-014-1122-8
 
                 
            