Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 9, Issue 3 (2022)
  4. Notes on spherical bifractional Brownian ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Notes on spherical bifractional Brownian motion
Volume 9, Issue 3 (2022), pp. 339–355
Mohamed El Omari ORCID icon link to view author Mohamed El Omari details  

Authors

 
Placeholder
https://doi.org/10.15559/22-VMSTA207
Pub. online: 7 June 2022      Type: Research Article      Open accessOpen Access

Received
30 September 2021
Revised
3 March 2022
Accepted
17 May 2022
Published
7 June 2022

Abstract

The existence of the bifractional Brownian motion ${B_{H,K}}$ indexed by a sphere when $K\in (-\infty ,1]\setminus \{0\}$ and $H\in (0,1/2]$ is discussed, and the asymptotics of its excursion probability $\mathbb{P}\left\{{\sup _{M\in \mathbb{S}}}{B_{H,K}}(M)>x\right\}$ as $x\to \infty $ is studied.

References

[1] 
Cheng, D., Liu, P.: Extremes of spherical fractional Brownian motion. Extremes 22(3), 433–457 (2019) MR3984357. https://doi.org/10.1007/s10687-019-00344-4
[2] 
Cheng, D., Xiao, Y.: Excursion probability of gaussian random fields on sphere. Bernoulli 22(2), 1113–1130 (2016) MR3449810. https://doi.org/10.3150/14-BEJ688
[3] 
Clerc, M., Mallat, S.: Estimating deformations of stationary processes. Ann. Stat. 31(6), 1772–1821 (2003) MR2036390. https://doi.org/10.1214/aos/1074290327
[4] 
Cohen, S., Guyon, X., Perrin, O., Pontier, M.: Identification of an isometric transformation of the standard Brownian sheet. J. Stat. Plan. Inference 136(4), 1317–1330 (2006) MR2253765. https://doi.org/10.1016/j.jspi.2004.09.012
[5] 
El Omari, M.: Mixtures of higher-order fractional Brownian motions. Commun. Stat., Theory Methods 1–16 (2021) https://doi.org/10.1080/03610926.2021.1986541
[6] 
El Omari, M.: An α-order fractional Brownian motion with Hurst index $H\in (0,1)$ and $\alpha \in {\mathrm{R}_{+}}$. Sankhya A, 1–28 (2022) https://doi.org/10.1007/s13171-021-00266-z
[7] 
Gelfand, A.E., Diggle, P., Guttorp, P., Fuentes, M.: Handbook of Spatial Statistics. CRC press (2010) MR2730964. https://doi.org/10.1201/9781420072884-c29
[8] 
Genton, M.G., Perrin, O.: On a time deformation reducing nonstationary stochastic processes to local stationarity. J. Appl. Probab. 41(1), 236–249 (2004) MR2036285. https://doi.org/10.1017/s0021900200014170
[9] 
Guyon, X., Perrin, O.: Identification of space deformation using linear and superficial quadratic variations. Stat. Probab. Lett. 47(3), 307–316 (2000) MR1747492. https://doi.org/10.1016/S0167-7152(99)00171-6
[10] 
Houdré, C., Villa, J.: An example of infinite dimensional quasi-helix. Contemp. Math. 336, 195–202 (2003) MR2037165. https://doi.org/10.1090/conm/336/06034
[11] 
Istas, J.: Spherical and hyperbolic fractional Brownian motion. Electron. Commun. Probab. 10, 254–262 (2005) MR2198600. https://doi.org/10.1214/ECP.v10-1166
[12] 
Istas, J.: Manifold indexed fractional fields. ESAIM Probab. Stat. 16, 222–276 (2012) MR2956575. https://doi.org/10.1051/ps/2011106
[13] 
Jeong, J., Jun, M., Genton, M.G.: Spherical process models for global spatial statistics. Statistical science: a review journal of the Institute of Mathematical Statistics 32(4), 501 (2017) MR3730519. https://doi.org/10.1214/17-STS620
[14] 
Kahane, J.-P.: Some Random Series of Functions vol. 5. Cambridge University Press (1993) MR0833073
[15] 
Kruk, I., Russo, F., Tudor, C.A.: Wiener integrals, Malliavin calculus and covariance measure structure. J. Funct. Anal. 249(1), 92–142 (2007) MR2338856. https://doi.org/10.1016/j.jfa.2007.03.031
[16] 
Lifshits, M.: Lectures on gaussian processes. In: Lectures on Gaussian Processes, pp. 1–117. Springer (2012) MR3024389. https://doi.org/10.1007/978-3-642-24939-6
[17] 
Lifshits, M., Volkova, K.: Bifractional Brownian motion: existence and border cases. ESAIM Probab. Stat. 19, 766–781 (2015) MR3438257. https://doi.org/10.1051/ps/2015015
[18] 
Ma, C.: Stationary and isotropic vector random fields on spheres. Math. Geosci. 44(6), 765–778 (2012) MR2956272. https://doi.org/10.1007/s11004-012-9411-8
[19] 
Ma, C.: Multifractional vector Brownian motions, their decompositions, and generalizations. Stoch. Anal. Appl. 33(3), 535–548 (2015) MR3339317. https://doi.org/10.1080/07362994.2015.1017108
[20] 
Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968) MR0242239. https://doi.org/10.1137/1010093
[21] 
Marinucci, D., Peccati, G.: Random Fields on the Sphere: Representation, Limit Theorems and Cosmological Applications vol. 389. Cambridge University Press (2011) MR2840154. https://doi.org/10.1017/CBO9780511751677
[22] 
Oh, H.-S., Li, T.-H.: Estimation of global temperature fields from scattered observations by a spherical-wavelet-based spatially adaptive method. J. R. Stat. Soc., Ser. B, Stat. Methodol. 66(1), 221–238 (2004) MR2035768. https://doi.org/10.1046/j.1369-7412.2003.05220.x
[23] 
Perrin, O.: Quadratic variation for Gaussian processes and application to time deformation. Stoch. Process. Appl. 82(2), 293–305 (1999) MR1700011. https://doi.org/10.1016/S0304-4149(99)00037-X
[24] 
Russo, F., Tudor, C.A.: On bifractional Brownian motion. Stoch. Process. Appl. 116(5), 830–856 (2006) MR2218338. https://doi.org/10.1016/j.spa.2005.11.013
[25] 
Schoenberg, I.J.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44(3), 522–536 (1938) MR1501980. https://doi.org/10.2307/1989894
[26] 
Schölkopf, B., Smola, A.J., Bach, F., et al.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT press (2002)
[27] 
Stein, M.L.: Spatial variation of total column ozone on a global scale. Ann. Appl. Stat. 1(1), 191–210 (2007) MR2393847. https://doi.org/10.1214/07-AOAS106
[28] 
Stein Michael, L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York (1999) MR1697409. https://doi.org/10.1007/978-1-4612-1494-6
[29] 
Tudor, C., Es-Sebaiy, K.: Multidimensional bifractional Brownian motion: Itô and Tanaka formulas. Stoch. Dyn. 07(03), 365–388 (2007) MR2351043. https://doi.org/10.1142/S0219493707002050
[30] 
Tudor, C.A., Xiao, Y.: Sample path properties of bifractional Brownian motion. Bernoulli 13(4), 1023–1052 (2007) MR2364225. https://doi.org/10.3150/07-BEJ6110
[31] 
Venet, N.: Nonexistence of fractional Brownian fields indexed by cylinders. Electron. J. Probab. 24, 1–26 (2019) MR3978225. https://doi.org/10.1214/18-EJP256

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2022 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Fractional brownian motion bifractional brownian motion excursion probability sphere asymptotics

MSC2010
60G15 60G70

Metrics
since March 2018
502

Article info
views

536

Full article
views

315

PDF
downloads

116

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy