Notes on spherical bifractional Brownian motion
Volume 9, Issue 3 (2022), pp. 339–355
Pub. online: 7 June 2022
Type: Research Article
Open Access
Received
30 September 2021
30 September 2021
Revised
3 March 2022
3 March 2022
Accepted
17 May 2022
17 May 2022
Published
7 June 2022
7 June 2022
Abstract
The existence of the bifractional Brownian motion ${B_{H,K}}$ indexed by a sphere when $K\in (-\infty ,1]\setminus \{0\}$ and $H\in (0,1/2]$ is discussed, and the asymptotics of its excursion probability $\mathbb{P}\left\{{\sup _{M\in \mathbb{S}}}{B_{H,K}}(M)>x\right\}$ as $x\to \infty $ is studied.
References
Cheng, D., Liu, P.: Extremes of spherical fractional Brownian motion. Extremes 22(3), 433–457 (2019) MR3984357. https://doi.org/10.1007/s10687-019-00344-4
Cheng, D., Xiao, Y.: Excursion probability of gaussian random fields on sphere. Bernoulli 22(2), 1113–1130 (2016) MR3449810. https://doi.org/10.3150/14-BEJ688
Clerc, M., Mallat, S.: Estimating deformations of stationary processes. Ann. Stat. 31(6), 1772–1821 (2003) MR2036390. https://doi.org/10.1214/aos/1074290327
Cohen, S., Guyon, X., Perrin, O., Pontier, M.: Identification of an isometric transformation of the standard Brownian sheet. J. Stat. Plan. Inference 136(4), 1317–1330 (2006) MR2253765. https://doi.org/10.1016/j.jspi.2004.09.012
El Omari, M.: Mixtures of higher-order fractional Brownian motions. Commun. Stat., Theory Methods 1–16 (2021) https://doi.org/10.1080/03610926.2021.1986541
El Omari, M.: An α-order fractional Brownian motion with Hurst index $H\in (0,1)$ and $\alpha \in {\mathrm{R}_{+}}$. Sankhya A, 1–28 (2022) https://doi.org/10.1007/s13171-021-00266-z
Gelfand, A.E., Diggle, P., Guttorp, P., Fuentes, M.: Handbook of Spatial Statistics. CRC press (2010) MR2730964. https://doi.org/10.1201/9781420072884-c29
Genton, M.G., Perrin, O.: On a time deformation reducing nonstationary stochastic processes to local stationarity. J. Appl. Probab. 41(1), 236–249 (2004) MR2036285. https://doi.org/10.1017/s0021900200014170
Guyon, X., Perrin, O.: Identification of space deformation using linear and superficial quadratic variations. Stat. Probab. Lett. 47(3), 307–316 (2000) MR1747492. https://doi.org/10.1016/S0167-7152(99)00171-6
Houdré, C., Villa, J.: An example of infinite dimensional quasi-helix. Contemp. Math. 336, 195–202 (2003) MR2037165. https://doi.org/10.1090/conm/336/06034
Istas, J.: Spherical and hyperbolic fractional Brownian motion. Electron. Commun. Probab. 10, 254–262 (2005) MR2198600. https://doi.org/10.1214/ECP.v10-1166
Istas, J.: Manifold indexed fractional fields. ESAIM Probab. Stat. 16, 222–276 (2012) MR2956575. https://doi.org/10.1051/ps/2011106
Jeong, J., Jun, M., Genton, M.G.: Spherical process models for global spatial statistics. Statistical science: a review journal of the Institute of Mathematical Statistics 32(4), 501 (2017) MR3730519. https://doi.org/10.1214/17-STS620
Kahane, J.-P.: Some Random Series of Functions vol. 5. Cambridge University Press (1993) MR0833073
Kruk, I., Russo, F., Tudor, C.A.: Wiener integrals, Malliavin calculus and covariance measure structure. J. Funct. Anal. 249(1), 92–142 (2007) MR2338856. https://doi.org/10.1016/j.jfa.2007.03.031
Lifshits, M.: Lectures on gaussian processes. In: Lectures on Gaussian Processes, pp. 1–117. Springer (2012) MR3024389. https://doi.org/10.1007/978-3-642-24939-6
Lifshits, M., Volkova, K.: Bifractional Brownian motion: existence and border cases. ESAIM Probab. Stat. 19, 766–781 (2015) MR3438257. https://doi.org/10.1051/ps/2015015
Ma, C.: Stationary and isotropic vector random fields on spheres. Math. Geosci. 44(6), 765–778 (2012) MR2956272. https://doi.org/10.1007/s11004-012-9411-8
Ma, C.: Multifractional vector Brownian motions, their decompositions, and generalizations. Stoch. Anal. Appl. 33(3), 535–548 (2015) MR3339317. https://doi.org/10.1080/07362994.2015.1017108
Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968) MR0242239. https://doi.org/10.1137/1010093
Marinucci, D., Peccati, G.: Random Fields on the Sphere: Representation, Limit Theorems and Cosmological Applications vol. 389. Cambridge University Press (2011) MR2840154. https://doi.org/10.1017/CBO9780511751677
Oh, H.-S., Li, T.-H.: Estimation of global temperature fields from scattered observations by a spherical-wavelet-based spatially adaptive method. J. R. Stat. Soc., Ser. B, Stat. Methodol. 66(1), 221–238 (2004) MR2035768. https://doi.org/10.1046/j.1369-7412.2003.05220.x
Perrin, O.: Quadratic variation for Gaussian processes and application to time deformation. Stoch. Process. Appl. 82(2), 293–305 (1999) MR1700011. https://doi.org/10.1016/S0304-4149(99)00037-X
Russo, F., Tudor, C.A.: On bifractional Brownian motion. Stoch. Process. Appl. 116(5), 830–856 (2006) MR2218338. https://doi.org/10.1016/j.spa.2005.11.013
Schoenberg, I.J.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44(3), 522–536 (1938) MR1501980. https://doi.org/10.2307/1989894
Stein, M.L.: Spatial variation of total column ozone on a global scale. Ann. Appl. Stat. 1(1), 191–210 (2007) MR2393847. https://doi.org/10.1214/07-AOAS106
Stein Michael, L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York (1999) MR1697409. https://doi.org/10.1007/978-1-4612-1494-6
Tudor, C., Es-Sebaiy, K.: Multidimensional bifractional Brownian motion: Itô and Tanaka formulas. Stoch. Dyn. 07(03), 365–388 (2007) MR2351043. https://doi.org/10.1142/S0219493707002050
Tudor, C.A., Xiao, Y.: Sample path properties of bifractional Brownian motion. Bernoulli 13(4), 1023–1052 (2007) MR2364225. https://doi.org/10.3150/07-BEJ6110
Venet, N.: Nonexistence of fractional Brownian fields indexed by cylinders. Electron. J. Probab. 24, 1–26 (2019) MR3978225. https://doi.org/10.1214/18-EJP256