Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 10, Issue 1 (2023)
  4. Reflected generalized discontinuous BSDE ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

Reflected generalized discontinuous BSDEs with rcll barrier and an obstacle problem of IPDE with nonlinear Neumann boundary conditions
Volume 10, Issue 1 (2023), pp. 77–110
Mohammed Elhachemy ORCID icon link to view author Mohammed  Elhachemy details   Mohamed El Otmani  

Authors

 
Placeholder
https://doi.org/10.15559/22-VMSTA218
Pub. online: 30 December 2022      Type: Research Article      Open accessOpen Access

Received
2 July 2022
Revised
12 October 2022
Accepted
12 December 2022
Published
30 December 2022

Abstract

Reflected generalized backward stochastic differential equations (BSDEs) with one discontinuous barrier are investigated when the noise is driven by a Brownian motion and an independent Poisson measure. The existence and uniqueness of the solution are derived when the generators are monotone and the barrier is right-continuous with left limits (rcll). The link is established between this solution and a viscosity solution for an obstacle problem of integral-partial differential equations with nonlinear Neumann boundary conditions.

References

[1] 
Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stoch. Int. J. Probab. Stoch. Process. 60(1-2), 57–83 (1997). MR1436432. https://doi.org/10.1080/17442509708834099
[2] 
Darling, R.W., Pardoux, E.: Backwards SDE with random terminal time and applications to semilinear elliptic PDE. Ann. Probab. 25(3), 1135–1159 (1997). MR1457614. https://doi.org/10.1214/aop/1024404508
[3] 
Dellacherie, C., Meyer, P.A.: Probabilités et Potentiel, Théorie des Martingales, Chaps. V–VIII (1980). MR0566768
[4] 
Delong, Ł.: Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications. Springer (2013). MR3089193. https://doi.org/10.1007/978-1-4471-5331-3
[5] 
El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finance 7(1), 1–71 (1997). MR1434407. https://doi.org/10.1111/1467-9965.00022
[6] 
El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S., Quenez, M.-C.: Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Probab. 25(2), 702–737 (1997). MR1434123. https://doi.org/10.1214/aop/1024404416
[7] 
El Otmani, M.: Generalized bsde driven by a lévy process. J. Appl. Math. Stoch. Anal. 2006, 085407 (2006). MR2253532. https://doi.org/10.1155/JAMSA/2006/85407
[8] 
El Otmani, M.: Reflected BSDE driven by a Lévy process. J. Theor. Probab. 22(3), 601–619 (2009). MR2530105. https://doi.org/10.1007/s10959-009-0229-3
[9] 
Essaky, E.: Reflected backward stochastic differential equation with jumps and rcll obstacle. Bull. Sci. Math. 132(8), 690–710 (2008). MR2474488. https://doi.org/10.1016/j.bulsci.2008.03.005
[10] 
Fujiwara, T., Kunita, H.: Stochastic differential equations of jump type and Lévy processes in diffeomorphisms group. J. Math. Kyoto Univ. 25(1), 71–106 (1985). MR0777247. https://doi.org/10.1215/kjm/1250521160
[11] 
Hamadène, S., Ouknine, Y.: Reflected backward stochastic differential equation with jumps and random obstacle. Electron. J. Probab. 8, 1–20 (2003). MR1961164. https://doi.org/10.1214/EJP.v8-124
[12] 
Hamadene, S., Ouknine, Y.: Reflected backward sdes with general jumps. Theory Probab. Appl. 60(2), 263–280 (2016). MR3568776. https://doi.org/10.1137/S0040585X97T987648
[13] 
Hamedene, S., Lepeltier, J.: Zero-sum stochastic differential games and BSDEs. Syst. Control Lett. 24, 259–263 (1995). MR1321134. https://doi.org/10.1016/0167-6911(94)00011-J
[14] 
Łaukajtys, W., Słomiński, L.: Penalization methods for reflecting stochastic differential equations with jumps. Stoch. Stoch. Rep. 75(5), 275–293 (2003). MR2017780. https://doi.org/10.1080/1045112031000155687
[15] 
Lepeltier, J.-P., Xu, M.: Penalization method for reflected backward stochastic differential equations with one rcll barrier. Stat. Probab. Lett. 75(1), 58–66 (2005). MR2185610. https://doi.org/10.1016/j.spl.2005.05.016
[16] 
Øksendal, B., Sulem, A.: Stochastic control of jump diffusions. In: Applied Stochastic Control of Jump Diffusions, pp. 93–155. Springer (2019). MR3931325. https://doi.org/10.1007/978-3-030-02781-0
[17] 
Pardoux, E.: Generalized discontinuous backward stochastic differential equations. In: Pitman Research Notes in Mathematics Series, pp. 207–219 (1997). MR1752684. https://doi.org/10.1016/S0377-0427(97)00124-6
[18] 
Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990). MR1037747. https://doi.org/10.1016/0167-6911(90)90082-6
[19] 
Pardoux, E., Peng, S.: Backward stochastic differential equations and quasilinear parabolic partial differential equations. In: Stochastic Partial Differential Equations and Their Applications, pp. 200–217. Springer (1992)
[20] 
Pardoux, E., Tang, S.: Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Relat. Fields 114(2), 123–150 (1999). MR1701517. https://doi.org/10.1007/s004409970001
[21] 
Pardoux, E., Zhang, S.: Generalized BSDEs and nonlinear Neumann boundary value problems. Probab. Theory Relat. Fields 110(4), 535–558 (1998). MR1626963. https://doi.org/10.1007/s004400050158
[22] 
Peng, S.: Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep. 37(1-2), 61–74 (1991). MR1149116
[23] 
Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Applications of Mathematics, vol. 21. Springer (2004). 0172-4568. MR2020294
[24] 
Ren, Y., El Otmani, M.: Generalized reflected BSDEs driven by a Lévy process and an obstacle problem for PDIEs with a nonlinear Neumann boundary condition. J. Comput. Appl. Math. 233(8), 2027–2043 (2010). MR2564037. https://doi.org/10.1016/j.cam.2009.09.037
[25] 
Ren, Y., Xia, N.: Generalized reflected BSDE and an obstacle problem for PDEs with a nonlinear Neumann boundary condition. Stoch. Anal. Appl. 24(5), 1013–1033 (2006). MR2258915. https://doi.org/10.1080/07362990600870454
[26] 
Rong, S.: On solutions of backward stochastic differential equations with jumps and applications. Stoch. Process. Appl. 66(2), 209–236 (1997). MR1440399. https://doi.org/10.1016/S0304-4149(96)00120-2
[27] 
Royer, M.: Backward stochastic differential equations with jumps and related non-linear expectations. Stoch. Process. Appl. 116(10), 1358–1376 (2006). MR2260739. https://doi.org/10.1016/j.spa.2006.02.009
[28] 
Tang, S., Li, X.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32(5), 1447–1475 (1994). MR1288257. https://doi.org/10.1137/S0363012992233858

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2023 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Generalized BSDE with jumps reflected BSDE rcll barrier viscosity solution integral-partial differential equations

MSC2010
60H05 60H10 60H30 35D40

Metrics
since March 2018
524

Article info
views

329

Full article
views

343

PDF
downloads

109

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy