Reflected generalized discontinuous BSDEs with rcll barrier and an obstacle problem of IPDE with nonlinear Neumann boundary conditions
Volume 10, Issue 1 (2023), pp. 77–110
Pub. online: 30 December 2022
Type: Research Article
Open Access
Received
2 July 2022
2 July 2022
Revised
12 October 2022
12 October 2022
Accepted
12 December 2022
12 December 2022
Published
30 December 2022
30 December 2022
Abstract
Reflected generalized backward stochastic differential equations (BSDEs) with one discontinuous barrier are investigated when the noise is driven by a Brownian motion and an independent Poisson measure. The existence and uniqueness of the solution are derived when the generators are monotone and the barrier is right-continuous with left limits (rcll). The link is established between this solution and a viscosity solution for an obstacle problem of integral-partial differential equations with nonlinear Neumann boundary conditions.
References
Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stoch. Int. J. Probab. Stoch. Process. 60(1-2), 57–83 (1997). MR1436432. https://doi.org/10.1080/17442509708834099
Darling, R.W., Pardoux, E.: Backwards SDE with random terminal time and applications to semilinear elliptic PDE. Ann. Probab. 25(3), 1135–1159 (1997). MR1457614. https://doi.org/10.1214/aop/1024404508
Dellacherie, C., Meyer, P.A.: Probabilités et Potentiel, Théorie des Martingales, Chaps. V–VIII (1980). MR0566768
Delong, Ł.: Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications. Springer (2013). MR3089193. https://doi.org/10.1007/978-1-4471-5331-3
El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finance 7(1), 1–71 (1997). MR1434407. https://doi.org/10.1111/1467-9965.00022
El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S., Quenez, M.-C.: Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Probab. 25(2), 702–737 (1997). MR1434123. https://doi.org/10.1214/aop/1024404416
El Otmani, M.: Generalized bsde driven by a lévy process. J. Appl. Math. Stoch. Anal. 2006, 085407 (2006). MR2253532. https://doi.org/10.1155/JAMSA/2006/85407
El Otmani, M.: Reflected BSDE driven by a Lévy process. J. Theor. Probab. 22(3), 601–619 (2009). MR2530105. https://doi.org/10.1007/s10959-009-0229-3
Essaky, E.: Reflected backward stochastic differential equation with jumps and rcll obstacle. Bull. Sci. Math. 132(8), 690–710 (2008). MR2474488. https://doi.org/10.1016/j.bulsci.2008.03.005
Fujiwara, T., Kunita, H.: Stochastic differential equations of jump type and Lévy processes in diffeomorphisms group. J. Math. Kyoto Univ. 25(1), 71–106 (1985). MR0777247. https://doi.org/10.1215/kjm/1250521160
Hamadène, S., Ouknine, Y.: Reflected backward stochastic differential equation with jumps and random obstacle. Electron. J. Probab. 8, 1–20 (2003). MR1961164. https://doi.org/10.1214/EJP.v8-124
Hamadene, S., Ouknine, Y.: Reflected backward sdes with general jumps. Theory Probab. Appl. 60(2), 263–280 (2016). MR3568776. https://doi.org/10.1137/S0040585X97T987648
Hamedene, S., Lepeltier, J.: Zero-sum stochastic differential games and BSDEs. Syst. Control Lett. 24, 259–263 (1995). MR1321134. https://doi.org/10.1016/0167-6911(94)00011-J
Łaukajtys, W., Słomiński, L.: Penalization methods for reflecting stochastic differential equations with jumps. Stoch. Stoch. Rep. 75(5), 275–293 (2003). MR2017780. https://doi.org/10.1080/1045112031000155687
Lepeltier, J.-P., Xu, M.: Penalization method for reflected backward stochastic differential equations with one rcll barrier. Stat. Probab. Lett. 75(1), 58–66 (2005). MR2185610. https://doi.org/10.1016/j.spl.2005.05.016
Øksendal, B., Sulem, A.: Stochastic control of jump diffusions. In: Applied Stochastic Control of Jump Diffusions, pp. 93–155. Springer (2019). MR3931325. https://doi.org/10.1007/978-3-030-02781-0
Pardoux, E.: Generalized discontinuous backward stochastic differential equations. In: Pitman Research Notes in Mathematics Series, pp. 207–219 (1997). MR1752684. https://doi.org/10.1016/S0377-0427(97)00124-6
Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990). MR1037747. https://doi.org/10.1016/0167-6911(90)90082-6
Pardoux, E., Tang, S.: Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Relat. Fields 114(2), 123–150 (1999). MR1701517. https://doi.org/10.1007/s004409970001
Pardoux, E., Zhang, S.: Generalized BSDEs and nonlinear Neumann boundary value problems. Probab. Theory Relat. Fields 110(4), 535–558 (1998). MR1626963. https://doi.org/10.1007/s004400050158
Peng, S.: Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep. 37(1-2), 61–74 (1991). MR1149116
Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Applications of Mathematics, vol. 21. Springer (2004). 0172-4568. MR2020294
Ren, Y., El Otmani, M.: Generalized reflected BSDEs driven by a Lévy process and an obstacle problem for PDIEs with a nonlinear Neumann boundary condition. J. Comput. Appl. Math. 233(8), 2027–2043 (2010). MR2564037. https://doi.org/10.1016/j.cam.2009.09.037
Ren, Y., Xia, N.: Generalized reflected BSDE and an obstacle problem for PDEs with a nonlinear Neumann boundary condition. Stoch. Anal. Appl. 24(5), 1013–1033 (2006). MR2258915. https://doi.org/10.1080/07362990600870454
Rong, S.: On solutions of backward stochastic differential equations with jumps and applications. Stoch. Process. Appl. 66(2), 209–236 (1997). MR1440399. https://doi.org/10.1016/S0304-4149(96)00120-2
Royer, M.: Backward stochastic differential equations with jumps and related non-linear expectations. Stoch. Process. Appl. 116(10), 1358–1376 (2006). MR2260739. https://doi.org/10.1016/j.spa.2006.02.009
Tang, S., Li, X.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32(5), 1447–1475 (1994). MR1288257. https://doi.org/10.1137/S0363012992233858